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1.1 General Introduction 

The Eurasian otter (Lutra lutra, Linnaeus, 1758) is a member of the Mustelidae or weasel family of 

mammals. As a semi-aquatic carnivore they inhabit coastal and freshwater habitats including all kinds 

of running and standing waters as well as wetlands (Kruuk 2006). Their main prey is fish, which 

brings them into direct competition with humans who use fish either as food (e.g. aquaculture) or for 

recreation (e.g. angling) (Santos-Reis et al. 2013). Also their fur was highly coveted, leading to a 

heavy hunting pressure especially in the late 19th/early 20th century. Furthermore, river regulation and 

canalisation, destruction of riparian vegetation, intensified agricultural land use accompanied by a loss 

of structural diversity, as well as water pollution, draining of wetlands, and a decrease in prey species 

resulted in a massive population decline all over their distribution range, but especially in Europe 

(Kruuk 2006; Ruiz-Olmo et al. 2008). Here, the otter vanished in many parts of Middle Europe such as 

Western Germany, the Netherlands, Belgium, Luxembourg, Eastern France, Switzerland, parts of 

Austria, or Central Italy (Ruiz-Olmo et al. 2008). As a consequence, the otter received protection 

statuses from the Bern Convention (1979 – strictly protected), the Habitats Directive (1992 – Annexes 

II and IV), the convention on international trade in endangered species (CITES; 1977 – Appendix I), 

and the world conservation union (IUCN; 2000 – vulnerable; 2004 – near threatened). This protection 

might have been one of several reasons why otters started to recolonise former haunts in Europe 

within the last decades (Ruiz-Olmo et al. 2008). In Germany, the remaining populations of Eastern 

Saxony, Brandenburg, and Mecklenburg-Western Pomerania started to rise and to expand towards 

west (Reuther 2004), despite the increasing road-kill risk that is the major threat nowadays (Hauer et 

al. 2002a). But our knowledge about otters is still very limited. For example, Kruuk (2006) stated that 

“we still know little about actual numbers over larger areas, about population sizes, and about changes 

in areas where previous estimates have been made.” Also little is known about the process and speed 

of the recolonisation in Germany, about migration routes, or about the population dynamic and 

population numbers of the source populations in Eastern Germany. But a solid basis for conservation 

management also in the face of environmental changes requires information on population dynamic 

and actual numbers to e.g. understand the current spread. 

However, studying otters is rather challenging since they are difficult to observe directly because of 

their mostly nocturnal activity (Ruiz-Olmo et al. 2008) and they are also difficult to live-trap (Kruuk 

2006). So far, there are only few studies using telemetry (Durbin 1998; Ó Néill et al. 2008; Quaglietta 

et al. 2012), since there are several problems associated with this technique. First, the animal has to be 

live-trapped; this requires usually an official permit and veterinary assistance. Then, the telemetry 

device has to be affixed to the otter, either externally or by abdominal implantation that involves a 

consequential risk for the animal. Standard collars are also risky and not recommended for otters 

(Kruuk 2006). But Quaglietta et al. (2012) just recently reported of a new approach that use harnesses 

with a GPS-GPRS device. However, the obtained information is often only received by a few 

individuals (e.g. five otters by Durbin (1998)) and is usually about spatial use or spatial organisation 
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(Durbin 1998; Ó Néill et al. 2009; Quaglietta et al. 2014). Direct observations were used in several 

studies of Hans Kruuk and colleagues to gain information on otter numbers, individual ranges or 

spatial organisation (Kruuk & Moorhouse 1991), on recruitment (Kruuk et al. 1991), or on scent 

marking behaviour (Kruuk 1992). However, Kruuk (2006) conceded that it required several years to 

be able to distinguish individuals by ear-tags or characteristic throat patches to receive such 

information. Furthermore, direct observations were only possible because otters at the coast of 

Shetland were diurnal (Kruuk 2006). To imply population sizes, Kruuk et al. (1989) also counted otter 

holts along the coast of Shetland. Here, holts were easy to find, but in freshwater areas this method 

was unsuitable (Kruuk 2006). Another approach with which one can obtain ecological information 

(e.g. body conditions, reproductive performance) is to collect carcasses. This method was applied 

several times (e.g. Kruuk & Conroy 1991; Ansorge et al. 1997; Ruiz-Olmo et al. 1998; Elmeros & 

Madsen 1999; Hauer et al. 2002b, a), but requires an elaborate system to find and collect dead 

animals, to store them and is usually done over a long period to receive reliable information. 

Moreover, some information drawn from the data (e.g. sex ratio, age pattern) can be biased if the 

probability to die is not equally distributed among age and gender.  

Instead of directly observing or handling the animal, there is also an indirect way by searching for 

their tracks or faeces. Especially the latter are easy to find as they are usually placed on conspicuous 

points throughout an otter’s home range and were often used for monitoring purposes (Mason & 

Macdonald 1987) or for diet analysis (e.g. Almeida et al. 2012). But inferring from the number of 

found faecal samples on the number of animals was as often criticised (Kruuk et al. 1986; Chanin 

2003) and although faeces indicate that otters are present, it is not valid vice versa (Kruuk et al. 1986). 

However, since each faecal sample contain sloughed gut cells from the originator, DNA techniques 

such as microsatellite genotyping (Bruford & Wayne 1993) can be used to assign an individual genetic 

fingerprint to each sample (Kohn & Wayne 1997). Microsatellites – also known as simple sequence 

repeats (SSRs) (Tautz 1989) or short tandem repeats (STRs) (Edwards et al. 1991) – consist of 

tandemly repeated sequences of 2–6 base pairs (bp) up to a total length of < 1000 bp. They are spread 

throughout the genome, very common, and highly polymorphic due to their high mutation rate (10-2–

10-6) (Hancock 1999). That makes them to excellent markers for individual identification (Bruford & 

Wayne 1993). This so-called non-invasive genetic sampling was first used on wild animals in the 

1990ies (Höss et al. 1992; Taberlet & Bouvet 1992). If individuals are genetically tagged, repeated 

sampling enables to track them in time and space, producing capture-recapture histories that can be 

applied to respective capture-mark-recapture (CMR) models. Non-invasive genetic sampling and the 

combination with CMR models can provide diverse information about population size and dynamic 

(e.g. survival, migration, growth rate, fecundity), behavioural biology, home range and territory size, 

genetic variation, phylogeography, relatedness, gene flow, as well as diet and diseases (Queller et al. 

1993; Kohn & Wayne 1997; Taberlet et al. 1999; Lukacs & Burnham 2005b). For otters microsatellite 

genotyping was only available since Dallas and Piertney (1998) designed primers for 13 polymorphic 
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microsatellites, that were first applied on wild-collected faecal samples by Dallas et al. (2003). In this 

work, the authors applied the method on carcasses and on wild-collected faecal samples and 

demonstrated that both sample groups generated similar estimates of population genetic composition 

and sex ratio, suggesting that faeces can be used to derive such information. Also for population size it 

was shown that microsatellite genotyping using faecal samples produced reliable estimates compared 

to classical field methods either by simulation (Petit & Valière 2006) or on wild mammal populations 

(Solberg et al. 2006; Guschanski et al. 2009; Marucco et al. 2012), also for otters (Arrendal et al. 

2007). In those studies, non-invasive genetic methods often revealed to be even cheaper and more 

accurate than classical field methods. 

The drawback of non-invasive genetic genotyping is the low quality of the samples involving low 

success rates, the problem of genotyping errors, and contamination susceptibility. Genotyping errors 

occur when the observed genotype is not corresponding to the true genotype of an individual 

(Pompanon et al. 2005). The lower the quality of a sample, the higher is the genotyping error rate. 

However, a bunch of methods were developed within the last years that either increase success rates 

and hence the probability of a correct genotype (Piggott et al. 2004; Beja-Pereira et al. 2009), 

minimises genotyping errors (Taberlet et al. 1996; Frantz et al. 2003), detect and quantify them (Miller 

et al. 2002; McKelvey & Schwartz 2005), or incorporate them into subsequent statistical analysis 

(Lukacs & Burnham 2005a; Wang 2007; Wright et al. 2009). 

 

1.2 Aim and Structure of the Dissertation 

With this thesis I aim to contribute to the research on the threatened Eurasian otter that is of high 

conservation concern, because of its earlier massive decline and range contractions, its important role 

as a top predator in its ecosystem (Ripple et al. 2014), and because of its current increase and 

expansion in Germany that evokes conflicts with humans living on aquaculture. To understand the 

population dynamic and hence the current spread and to be able to manage it, we require knowledge 

that is either unavailable, not well understood, or has to be checked whether it also applies to fish pond 

systems, the main otter habitat in the Upper Lusatia that is the main source population for the recent 

expansion in Saxony, Germany. For this purpose, I decided to use non-invasive genetic CMR methods 

to gain information about actual population sizes, population dynamic parameters, marking behaviour, 

and spatial use of one source population in Eastern Germany. To make this method more efficient, 

especially for otter scats, I first optimised the required genetic methods to receive high success rates 

and low genotyping errors rates (Chapter two). Following this, I applied non-invasive genetic CMR to 

the first sampling year (2006) to demonstrate pitfalls and risks of this method and present a road map 

in which I offer solutions for the outlined problems (Chapter three). This road map is not only valid 

for otters, but is written as a general guideline when using non-invasively collected samples with low 

quality (see also Appendix). Finally, I used this road map to obtain reliable estimates and information 

on population size, sex ratio, and marking behaviour (Chapter four), as well as survival, temporary 
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migration, dispersal, and spatial use (Chapter five) over six sampling years (2006–2012). Chapter six 

completes the thesis by first giving an overview of the conducted research, followed by a synthesis of 

the four key findings and a discussion about limitations and methodological constraints. The chapter 

closes with suggestions for further research and for otter conservation. 

 

1.3 The Eurasian Otter 

The Eurasian otter is widely distributed covering parts of Europe, Asia, and Northern Africa (Ruiz-

Olmo et al. 2008). In Europe the principal occurrences are divided into a “western distribution area” 

with Portugal, most parts of Spain, Western France, Britain, and Ireland and an “eastern distribution 

area” including Eastern Germany, Poland, Czech Republic, Slovenia, the Balkans (Southeast Europe), 

the Baltic states, Finland, and parts of Sweden, Norway, and Denmark (Fig. 1.1). In Germany, the 

eastern states Saxony, Brandenburg, and Mecklenburg-Western Pomerania are nowadays nearly 

nationwide inhabited. Otters can also be found again in Saxony-Anhalt, Thuringia, Schleswig-

Holstein, Lower Saxony, and Bavaria (BfN 2012) (Fig. 1.2). 

Figure 1.1 Distribution of the Eurasian otter in Europe. Black dots indicate confirmed otter presence after 1970, 
grey dots before 1970. Source: European Mammal Society (http://www.european-mammals.org/php/showmap.php?latname= 
Lutra+lutra&latname2=; [accessed: 22.04.2014]). 

 

The otter is a medium-sized carnivore with an average body weight of 10 kg for males and 7 kg for 

females and a total length (including the tail) of about 1.2 m for a large male and 1 m for females 

(Kruuk 2006). They are semi-aquatic inhabiting all kind of water bodies such as lakes, ponds, rivers, 
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streams, marshes, swamps and coastal areas. Their diet mainly consists of fish representing up to 80%, 

but they also feed on aquatic insects, crustaceans, amphibians, reptiles, birds, or small mammals, 

depending on the region, habitat, and the season (Clavero et al. 2003; Almeida et al. 2012). It is mostly 

crepuscular and nocturnal, but Kruuk (2006) found diurnal active otters in coastal habitats and 

supposed the activity pattern to be reversely bound to the activity of their prey. The otter lives 

predominantly solitary. It occupies a home range with a core area that usually does not overlap with 

core areas of other adult otters. Although the home range itself can overlap between females and 

between opposite sexes (Erlinge 1968; Kruuk 2006; Quaglietta et al. 2014). Many studies found home 

ranges of males to be larger than those of females depending on the reproduction status (Sjöåsen 

1997), residency (Kruuk & Moorhouse 1991), and the age (Arrendal 2007). On lakes and streams, 

female home ranges ranged between 1–12 km in length and male home ranges between 10–21 km 

(Erlinge 1967). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Distribution of the Eurasian otter in Germany as of 2006. Red dots illustrate occupied areas.  
Source: Federal Agency for Nature Conservation (BfN) (http://www.ffh-anhang4.bfn.de/fileadmin/AN4/documents/mammalia/ 
Lutra_lutra_Verbr.pdf#page=2; [accessed: 22.04.2014]). 
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Travel distances per night in winter amounted to 3–4 km by females with cubs and 9–10 km by male 

otters (Erlinge 1967). Longest travel distances that were so far measured over several nights are about 

68 km (Jenkins 1980) or even 84 km (Durbin 1998). For sleeping and resting they use either dens 

below ground level or between tree roots or piles of rocks, but they also use thick vegetation like reeds 

as resting sites (Kruuk 2006). 

Otters communicate via olfaction by scent marking. Their scats, so called spraints, are one source of 

scent marking. It consists mainly of food remains, sometimes with secretions of the two anal scent 

glands. But there is also a jelly-like substance produced in the intestine that can be deposited with and 

without the glandular secretion (Trowbridge 1983; Kruuk 2006; Kean et al. 2011). Spraints and anal 

jellies are often placed on prominent locations (Mason & Macdonald 1987), such as rocks, trees, on 

scratch piles, or under bridges. Since their digestion is comparably fast with average minimum passage 

rates of 3 h 15 min (Jurisch & Geidezis 1997), one otter can mark up to 30 spraints per day (Kruuk 

1992, 2006). There are several assumptions regarding the communicative function of sprainting such 

as territory defence (Gosling 1982), resource utilization (Kruuk 1992, 2006), or communicating sexual 

status or for mate attraction (Kean et al. 2011; Remonti et al. 2011). 

Sexual maturity is attained between 18 and 24 months (Hauer et al. 2002b; Ruiz-Olmo et al. 2008). 

Since otter females are continuously polyoestrous (Mason & Macdonald 1986), mating and hence 

breeding can occur at all times of the year, with seasonal peaks (Sidorovich 1991; Beja 1996; Elmeros 

& Madsen 1999) or with evident seasonality (Kruuk et al. 1987) in some regions. Hauer et al. (2002b) 

for example found a seasonal birth peak in summer for otters living in Eastern Germany. The gestation 

period lasts between 61–74 days (Kruuk 2006). Litter sizes at birth can reach up to five cubs (Hauer et 

al. 2002b), but averages to minima of 1.7 in coastal habitats and 2.9 in freshwater systems (Beja 

1996). For Eastern Germany a mean litter size at birth of 2.4 is reported (Hauer et al. 2002b). The cubs 

are reared by the female and start to be independent with 9 to 13 months (Kruuk et al. 1991; Hauer et 

al. 2002b). 

Within the first year of life, especially in the first few months, the mortality seems to be moderately 

high with up to 42% dead yearlings (Ansorge et al. 1997; Ruiz-Olmo et al. 1998; Kruuk 2006). 

Although the mortality in subsequent years is lower, Kruuk (2006) reported a linear increase in 

probability of death with age and most studies reported short life expectancies and populations that 

mainly consist of young otters (Kruuk & Conroy 1991; Ruiz-Olmo et al. 1998; Bjorklund & Arrendal 

2008). The oldest found otter in the wild was about 16 years old (Ansorge et al. 1997; Gorman et al. 

1998). Major threats are on one hand human interventions in the aquatic systems, such as damming or 

canalisation of rivers, removal of bank side vegetation, draining of wetlands, or pollution that either 

directly reduces reproduction rate or life expectancy or indirectly the food resources (Kruuk 2006; 

Ruiz-Olmo et al. 2008). On the other hand humans decimate otters directly through road-traffic that 

killed up to 87% of dead found individuals (Zinke 1991, 2000) or through fish-traps or even (often 

illegal) hunting (Sidorovich 1991; Hauer et al. 2002a). Besides the danger that emerges from humans, 
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there are occasionally observations of bite wounds mostly from dogs or attacks by raptors (Kruuk & 

Conroy 1991; Sidorovich 1991; Hauer et al. 2002a).  

The otter is a specialist in its habitat and there are no sympatric native species in Europe that live in 

exactly the same ecological niche. However, since the beginning of the 20th century the American 

mink (Neovison vison, Schreber 1777) started to spread in the wild, first in Northern Europe (e.g. 

Sweden: 1920s; Finland 1930s), later also in Middle (e.g. Germany: 1950s; Czech Republic: 1960s), 

and Southern Europe (e.g. Spain: 1970s; Italy: 1980s) (Bonesi & Palazon 2007). The mink was 

reported to be a competitor to Eurasian otters (Bonesi et al. 2006; McDonald et al. 2007; Melero et al. 

2012). However, many studies found that minks are dominated by otters, with the latter being able to 

reduce mink densities or to slow down their colonisation (e.g. Bonesi & Macdonald 2004b; Bonesi et 

al. 2006; Bonesi & Palazon 2007). But there are also researchers that propose probable co-existence 

between both (Bonesi & Macdonald 2004a; Harrington et al. 2009), with minks changing their diet to 

more terrestrial prey (Bonesi et al. 2004) and/or catching smaller fishes than otters (Bueno 1996). 

 

1.4 The Study Area 

All otter faecal samples required for this thesis were collected in a study area located in a region called 

Upper Lusatian heath and pond landscape in Eastern Saxony, Germany. The landscape in this region is 

a patchwork of ponds, creeks, moor, cropland, pasture, and forests, but also small settlements and 

abandoned opencast mines that are mostly flooded nowadays. Although the dominant land use is 

agriculture and forest, the region is characterised by about 5000 ha ponds that are used for fish farming 

(Myšiak et al. 2013). Together with Lower Lusatia, it is one of the biggest continuous pond region of 

Central Europe (Schwerdtner & Gruber 2007). Already in the 13th century the people started to 

construct fish ponds on the moor-, marsh-, and swampland (Myšiak et al. 2013). This was possible 

because of the numerous creeks and rivers out of which ditches were created that supply the ponds 

with water and connect them with each other (Böhnert et al. 1996). The ponds are on average about 1 

m deep and often clustered to pond areas. Main stocked fish species are carps (Cyprinus carpio), 

making up 89% of the fish production (Myšiak et al. 2013), but also tench (Tinca tinca), rainbow trout 

(Oncorhynchus mykiss), pike (Esox lucius), wels catfish (Silurus glanis), and perches (Percidae). In 

autumn, most ponds are drained. Saleable fish is harvested and sold; younger fish is inserted into the 

few smaller and deeper ponds for wintering. In spring, the fish is usually reinserted into the larger 

summer ponds. 



Figure 1.
1969, (B
Landwirt
(Ed.) 199
Radebeul
 

Besides 

several e

biggest 

Here, the

are impo

As can b

in Uppe

.3 Evidences o
B) 1970–1989
tschaft und Ge
96: Artenschu
l”. 

the commer

endangered s

and most vi

e otter never

ortant habitat

be seen in the

er Lusatia is 

of otter occurr
9, (C) 1994
eologie (LfUL
utzprogramm F

rcially funct

species inclu

iable popula

r got extinct 

ts for otters 

e chronologi

a source po

rences in the F
–1995. Maps

LG – Saxon F
Fischotter in 

tion, the pon

uding the Eu

tions in Cen

during its de

and function

cal sequence

opulation for

Federal State 
s are derive

Federal State O
Sachsen – M

nds play a v

urasian otter. 

ntral Europe

epression. G

ned as haven

e of otter dist

r the re-exp

of Saxony, G
ed from “Säc
Office for Env

Materialien zu 

very importa

Upper Lusa

e (Ansorge e

enerally, lan

n during thei

tributions in 

pansion in Sa

Cha

ermany, durin
chsisches La
vironment, Ag
Naturschutz u

ant role as s

atia is assum

et al. 1996, 

ndscapes dom

ir massive de

Saxony (Fig

axony. Henc

apter 1 – Intr

ng the period (
andesamt für 
griculture and
und Landscha

secondary ha

med to host o

1997; Klenk

minated by fi

ecline (Kran

g. 1.3), the po

ce, this popu

roduction 

9 

(A) 1950–
Umwelt, 

d Geology) 
aftspflege. 

abitat for 

one of the 

ke 1996). 

ish ponds 

nz, 2000). 

opulation 

ulation is 



Chapter 1 – Introduction 

10 

together with the ones in Brandenburg and Mecklenburg-Western Pomerania of prime importance for 

the otter conservation in Germany, even more because otters in fish pond systems are not well-

received by fish farmers (Klenke et al., 2013; Kranz, 2000). However, fish pond systems were so far 

underrepresented in studies that tried to gain information about the species. 

The chosen study area is located on the western margin of the UNESCO Biosphere Reserve “Upper 

Lusatian Heath and Pond Landscape” (“Oberlausitzer Heide- und Teichlandschaft”), between the 

villages “Königswartha” (51°19′ N, 14°20′ E) and “Groß Särchen” (51°22′ N, 14°19′ E). The study 

area includes seven pond areas, each comprising 8–13 ponds of varying size (0.36–39.6 ha), and one 

single pond (7.6 ha) (Fig. 1.4). In total, the study area included 64 ponds with an overall water surface 

of 505 ha. All ponds are connected by a complex system of ditches and streams and are framed by 

naturally vegetated embankments, partly used as agricultural roads. Islands, extensive reed belts, and 

heavily vegetated peninsulas induce a heterogeneous structure. The pond areas (PA) are surrounded by 

pastureland, cropland, forest, and small villages. One pond area is disconnected by a railway line, two 

are separated by roads out of which one is the federal road “B 96”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Geographical location of the study area and land use types. Blue areas are freshwater bodies (ponds 
or rivers/channels). Red dots depict mapped marking sites over all six years. 
 

1.5 General Methodology 

Since otters use their spraints for intraspecific communication, they tend to mark on frequently visited 

conspicuous terrestrial sites at specific locations throughout their home range (e.g. rocks, trunks, under 

bridges, at junctions of water channels, on runways). These markings sites are used by all members of 
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the population, regardless of their sex, reproductive status, or age (Kruuk 2006) and they can be easily 

detected by collectors. Each active otter marking site along the pond banks of all ponds filled with 

water and close-by ditches or streams were first mapped in early March 2006. They were tagged in a 

map and described in detail to facilitate a recover of each site later on. Although each pond in a pond 

area was rounded (if pond banks were not fully overgrown and hence impassable), most marking sites 

were located on banks between ponds rather than on the edge (Fig. 1.4). With the help of several field 

helpers, I conducted my first sampling period end of March 2006 from 26th–31st. The first day was 

used to train all field helpers how to search for faeces and to get acquainted with their pond area and 

tagged marking sites. Detected spraint samples at this first day were not collected but marked with 

materials of the surrounding to facilitate recognition of fresh spraints the next day. On the following 

five consecutive days, all detected fresh scat and anal jelly samples were collected from the tagged 

marking sites and from sites not previously detected. We collected mainly in the morning on days 

without rain or frost with two collectors for each pond area. This sampling regime was five times 

repeated in the years 2007–2012 (Tab. 1.1). Most marking sites were in use over several years or even 

over the entire six years. Due to the seasonality of the water regime, the study area size differed for 

each sampling year (Tab. 1.1). 

 

Table  1.1 Overview  of  the  six  sampling  years with  sampling  time,  size  of  the water  area,  and  number  of 
collected samples. 

Sampling year 
Sampling time    Area of 

water in ha 
Number of 
collected samples J  F  M A M  J  J  A  S  O N D

2006                    261 356

2007                    399 282

2008                    449 198

2009                   

2010                    294 381

2011                    366 461

2012                    360 454

 

The external layer of each detected spraint sample – containing sloughed gut cells – was wiped off 

with a commercially available cotton swab, placed in a separate sterile 10 ml cryovial (Biozym 

Scientific, Hessisch Oldendorf, Germany), and either DNA-extracted on day of collection (year 2006) 

or stored at –80°C in 1.8 ml ASL buffer (Qiagen, Hilden, Germany) (years 2007–2012). The DNA of 

all samples was purified (DNA extraction) using the QIAamp® DNA Stool Mini Kit (Qiagen). For 

microsatellite genotyping, I chose seven polymorphic microsatellite markers: Lut435, Lut457, Lut604, 

Lut615, Lut701, Lut733, and Lut914 (Dallas & Piertney 1998; Dallas et al. 2000, 2002). For the sex 

identification, I used two markers located on two genes linked to the Y chromosome: the SRY gene 

(sex-determining region Y) with the marker Lut-SRY (Dallas et al., 2000) and the DBY gene (DEAD 

box on the Y) with the marker DBY7Ggu (Hedmark et al., 2004). Each DNA-extracted sample was 

then amplified for the chosen markers using the polymerase chain reaction (PCR) (Saiki et al. 1988). 
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Since the forward primers (DNA sequence serving as starting point for PCR) were labelled with a 

fluorescent dye, the PCR-products can be separated by length and visualised (due to the dye) in a 

DNA sequencer and the corresponding software. Both allele sizes – the length of the microsatellite at 

each of the homologous chromosomes in base pairs – present the “genotype” of this individual at the 

specific microsatellite. The derived individual multi-locus genotypes were then used for further 

genetic and statistical analyses. 

For chapter two, I used samples that were either collected opportunistically in one pond area within 

the above described study area (experiments on preservation and extraction) or from the first 

systematic sampling year in 2006 (experiments on sample types and PCR protocols). Chapter three 

makes use of the collected samples in 2006, whereas chapters four and five present results of analyses 

using all collected samples over the entire six sampling years. 

 

1.6 Overview of Manuscripts 

Chapters two to five present the results of the research conducted and are written as scientific 

manuscripts. Out of these, chapters two and three are published in international peer-reviewed 

journals. Chapters four and five are submitted manuscripts. In the following, I give a brief overview of 

the four scientific manuscripts: 

 

Chapter two 

Title: An optimisation approach to increase DNA amplification success of otter faeces 

Authors: Simone Lampa, Bernd Gruber, Klaus Henle and Marion Hoehn 

Summary: This manuscript presents results of comparative experiments on the amplification success 

rate of different otter sample types, of different storage times, of two DNA extraction methods and of 

three PCR protocols. Our results suggested that anal jelly samples are of highest amplification success 

and that storage without a reagent at –20°C decrease the amplification success rate with increasing 

storage time. Furthermore, we could demonstrate that the more expensive and time-consuming Qiagen 

kit extraction produced significantly higher success rates compared to the cheap and quick Chelex® 

100 extraction method. Finally, we presented a two-step multiplex PCR protocol that significantly 

increased success rates and decreased genotyping error rates compared to the original PCR conditions 

for the employed markers described in Dallas et al. (1999). 

Author contributions: S.L. organised and carried out the field work, conducted the laboratory work, 

analysed the data statistically, and wrote the manuscript (contribution: 80%). B.G. helped in sample 

collection, supervised the statistical analyses, and revised the manuscript (contribution: 10%). K.H. 

provided the facilities and revised the manuscript (contribution: 4%). M.H. supervised parts of the lab 

work and revised the manuscript (contribution 6%). The idea and the design of the experiment was a 

collaborative effort of S.L. and B.G. 
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Current status: This chapter has been published as “Lampa S, Gruber B, Henle K & Hoehn M (2008) 

An optimisation approach to increase DNA amplification success of otter faeces. Conservation 

Genetics 9(1), 201-210. DOI 10.1007/s10592-007-9328-9”  

 

Chapter three 

Title: How to overcome genotyping errors in non-invasive genetic mark-recapture population size 

estimation – A review of available methods illustrated by a case study 

Authors: Simone Lampa, Klaus Henle, Reinhard Klenke, Marion Hoehn and Bernd Gruber 

Summary: In this manuscript, we reviewed the literature and the pros and cons of each step required 

for non-invasive genetic mark-recapture (CMR) analyses: sampling design; sampling, preservation, 

and extraction methods; microsatellite genotyping; population size estimation models. The review is 

strengthened by a case study on otters with which we tested several methods for their appropriateness 

to accommodate for genotyping errors. As a result, we offer a step-by-step protocol for non-invasive 

genetic CMR studies that target to reliably estimate population sizes in the presence of high 

genotyping error rates. This step-by-step protocol is also summarised in a table that can be found as 

supplemental material in the online version of this article at the publisher's website and is attached in 

the appendix of the dissertation. 

Author contributions: S.L. organised and conducted the field work, analysed the samples in the 

laboratory, analysed the samples statistically, reviewed the literature, as well as conceptualised and 

wrote the manuscript (contribution: 83%). K.H. provided the facilities, revised the manuscript and 

gave helpful comments that improved the manuscript in the process of re-submission (contribution: 

7%). R.K. helped in sample collection and revised the manuscript (contribution: 2%). M.H. helped in 

mapping of marking sites and with shortening the manuscript (contributions: 2%). B.G. helped 

mapping marking sites, collecting samples and in finding ideas for the outline of the manuscript, 

supervised parts of the statistics, and revised the manuscript (contribution: 6%). 

Current status: This chapter has been published as “Lampa S, Henle K, Klenke K, Hoehn M & Gruber 

B. (2013) How to Overcome Genotyping Errors in Non-Invasive Genetic Mark-Recapture Population 

Size Estimation – A Review of Available Methods Illustrated by a Case Study. Journal of Wildlife 

Management 77(8), 1490–1511. DOI 10.1002/jwmg.604”  

 

Chapter four 

Title: Non-invasive genetic mark-recapture as a means to study population sizes and marking 

behaviour of the elusive Eurasian otter (Lutra lutra) 

Authors: Simone Lampa, Jean-Baptiste Mihoub, Reinhard Klenke, Bernd Gruber and Klaus Henle 

Summary: In this manuscript, we used 2132 otter faeces collected over a period of six years (2006–

2012) to study the marking behaviour and to estimate population sizes and sex ratios employing 
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misidentification closed population CMR models. We further tested whether faecal sample densities 

can be used to infer on otters abundances. 

Author contributions: S.L. organised and conducted the field work, analysed collected samples in the 

laboratory and statistically, reviewed the literature, as well as conceptualised and wrote the manuscript 

(contribution: 85%). J-B.M gave support in statistical analyses and reviewed the manuscript 

(contribution: 3%). R.K. helped with sample collection (contribution: 3%). B.G. helped mapping 

marking sites and collecting samples, contributed to the basic research idea, and reviewed the 

manuscript (contribution: 3%). K.H. helped with sample collection, provided the facilities, and revised 

the manuscript (contribution: 6%). 

Current status: This chapter has been submitted to PLOS ONE on 1st of October 2014 

 

Chapter five 

Title: Non-invasive genetic mark-recapture as a means to study population dynamic and spatial use of 

Eurasian otters (Lutra lutra) in a fish pond landscape 

Authors: Simone Lampa, Jean-Baptiste Mihoub, Reinhard Klenke, Bernd Gruber and Klaus Henle 

Summary: This manuscript builds upon the data and results of chapter four. Using the samples 

collected from 2006–2012, we estimated apparent survival and temporary migration employing 

misidentification robust design models and tested for sex-biased dispersal. Additionally, we estimated 

activity range indices, tested for differences in sex, and for patterns in activity range overlaps between 

individuals. 

Author contributions: S.L. organised and conducted the field work, analysed collected samples in the 

laboratory and statistically, reviewed the literature, as well as conceptualised and wrote the manuscript 

(contribution: 85%). J-B.M gave support in statistical analyses and reviewed the manuscript 

(contribution: 3%). R.K. helped with sample collection (contribution: 3%). B.G. helped mapping 

marking sites and collecting samples, contributed to the basic research idea, and reviewed the 

manuscript (contribution: 3%). K.H. helped with sample collection, provided the facilities, and revised 

the manuscript (contribution: 6%). 

Current status: This chapter has been submitted to PLOS ONE on 1st of October 2014 
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4.1 Abstract 

Non-invasive genetic capture-mark-recapture (CMR) methods became a very important tool to 

estimate population parameters, such as population size and sex ratio, of elusive and rare species. The 

Eurasian otter (Lutra lutra) is such a species of management concern and is increasingly studied using 

faecal-based genetic sampling. For reliable results, the marking behaviour of otters has to be taken into 

account to avoid biased sex ratios or population size estimates. Using 2132 otter faeces of a wild otter 

population in Upper Lusatia (Saxony, Germany) collected over a period of six years (2006–2012), we 

applied genetic CMR analyses to study the marking behaviour and to gain estimates of population 

sizes and sex ratios. We detected a sex difference in the marking behaviour of otters with jelly samples 

being more often defecated by males and placed actively exposed on frequently used marking sites. 

Since jelly samples are of higher DNA quality, it is important to not only concentrate the sampling 

exclusively on this kind of samples or marking sites and to invest in sufficiently high numbers of 

repetitions of non-jelly samples to ensure an unbiased sex ratio. For population size estimation, we 

used closed population CMR models that account for genetic misidentification and behavioural 

responses, as otters seemed to react to the handling or removing of their spraints. We obtained the first 

precise abundance estimate with confidence intervals for Upper Lusatia (e.g. in 2012: ෡ܰ = 20 ± 2.1, 

95% CI = 16–25) and showed that spraint densities are not a reliable index for abundances. We could 

demonstrate that if minks live in sympatry with otters and have comparably high densities, a non-

negligible number of supposed otter samples are actually of mink origin. This could severely bias 

results of otter monitoring if samples are not genetically identified. 

 

4.2 Introduction  

Elusive species play an important role in conservation, especially if they contribute to conflicts that 

may have consequences to biodiversity conservation beyond their protection. However, elusive 

species are difficult to study with conventional methods and therefore we often lack demographic 

information that is an important prerequisite for appropriate conflict management. For such species 

faeces can provide relevant biological information (Kohn & Wayne 1997). Especially in conjunction 

with genetic techniques, such as microsatellite genotyping, it is possible to individually identify the 

originator and to use this information in capture-mark-recapture (CMR) models. The so called non-

invasive genetic CMR became a very powerful tool since its first application in the 1990ies (Höss et 

al. 1992; Taberlet & Bouvet 1992) to study rare and elusive species without direct handling (Lukacs & 

Burnham 2005b; Marucco et al. 2011). 

The basic principle of this approach is that non-invasively collected samples (e.g. faeces) are 

genotyped at multiple molecular loci (e.g. microsatellites). This multilocus genotype is then treated as 

a molecular individual mark. Matching genotypes are considered to belong to the same individual and 

are classified as recaptures. Non-matching genotypes indicate newly captured animals. Hence, for each 

sampling occasion, all individuals are determined to be either captured (coded as 1) or not captured 
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(coded as 0), resulting in individual capture histories that are used for CMR analyses. Non-invasive 

genetic CMR opens up the possibility to obtain estimates of population size, sex ratio, survival, 

migration, fecundity, or population growth (Lukacs & Burnham 2005b).  

However, there are several difficulties that must be overcome, such as low success rates and 

genotyping errors (Pompanon et al. 2005; Lampa et al. 2013). Genotyping errors can either result in 

erroneously assigning a sample to a wrong individual, because they appear to have the same genotype, 

or can create new so far unknown but “false individuals” (ghost individuals) by only one single loci 

being mistyped. The latter is more likely and can lead to overestimated population sizes (Creel et al. 

2003; Lampa et al. 2013). 

For unbiased estimates it is also required that all individuals have a reasonable chance of being 

collected (Lampa et al. 2013). Hence, when using faeces as DNA source, the marking behaviour of the 

target species has to be understood well to avoid biased results through marking differences in e.g. 

sex, age, social, or reproductive status (Marucco et al. 2011). In wolves, for example, dominant 

individuals have an increased capture probability due to higher marking rates and preferences for 

marking sites that are easier to find for collectors (Marucco et al. 2011). Also transient tigers rarely 

defecate on regular travel routes – where collectors usually search for faeces – to avoid detection by 

the resident and thus are virtually undetectable through faeces (Mondol et al. 2009). Consequently, 

when non-invasive genetic CMR is applied behavioural variations between individuals have to be 

compensated through the study design, laboratory process and/or parameter estimation methods.  

The Eurasian otter (Lutra lutra) is an elusive and conflict-laden species. It has suffered dramatic 

declines in Europe due to hunting and man-made changes in its aquatic habitats (e.g. canalisation, 

water pollution, prey decline) (Kruuk 2006; Ruiz-Olmo et al. 2008). This resulted in protective 

legislations throughout Europe. Following these protection activities, otters increased in densities and 

recolonised former haunts in Europe during the last decades. This evoked conflicts with fishermen 

because the otter’s main prey is fish (Ruiz-Olmo et al. 2008). However, we are still lacking important 

information for conflict management, such as actual population sizes, in most areas of Europe (Kruuk 

2006). 

Since otters are elusive and mainly nocturnal, they are difficult to (live-)trap (Kruuk 2006). So far, 

they were either counted directly (Kruuk & Moorhouse 1991; Ruiz-Olmo et al. 2001), or indirectly 

assessed by counting their holts (Kruuk et al. 1989), tracks (Ruiz-Olmo et al. 2001; Sulkava 2007; 

Garcia-Diaz et al. 2011), or faeces (Mason & Macdonald 1987; Balestrieri et al. 2011). Otter faeces, 

so-called spraints, are particularly suitable to study the species, because otters use them for 

intraspecific communication and produce daily up to 30 spraints (Kruuk 1992, 2006). According to 

Kruuk (2006), all members of a population regardless of their sex, reproductive status, or age defecate 

in nearly equal rates. Spraints are placed on frequently visited conspicuous terrestrial sites at specific 

locations throughout the home range (e.g. rocks, trunks, under bridges, at junctions of water channels). 

These marking sites and thus the spraints can be easily detected by collectors and therefore became the 
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“standard survey method” (Mason & Macdonald 1987) mainly to map otter distributions but also to 

receive rough estimates of population sizes (see Ruiz-Olmo et al. 2001 for a review). 

There are contrasting opinions whether spraint counts can be used as an index of abundance. Lanszki 

et al. (2008) found a positive correlation between relative spraint density and relative numbers of otter 

genotypes in an area and concluded that spraint counts are suitable as such an index. Similarly, Guter 

et al. (2008) found a positive correlation between number of spraints and number of otter visits in 

latrines but Calzada et al. (2010) criticised their study because they were not able to distinguish 

between individuals and could hence not tell whether all visits and spraint samples were deposited by 

a single individual. Other researchers also advised against the use of spraint density as an index of 

population sizes because of temporal, spatial, and individual sprainting variations (Kruuk et al. 1986; 

Ruiz-Olmo et al. 2001; Chanin 2003). 

In recent studies, researchers used otter spraints for non-invasive genetic capture-mark-recapture 

(CMR) analyses to estimate population size (Arrendal et al. 2007; Hajkova et al. 2009; Bonesi et al. 

2013). Although the sex ratio of otter populations is likely to be even or slightly female-biased 

(Sidorovich 1991; Ansorge et al. 1997; Kruuk 2006), most studies employing non-invasive genetic 

sampling found a male bias in their sampling (Dallas et al. 2003; Kalz et al. 2006; Arrendal et al. 

2007; Janssens et al. 2008; Hajkova et al. 2009; Lanszki et al. 2010; Bonesi et al. 2013). Therefore, 

Bonesi et al. (2013) queried whether non-invasive sampling is appropriate to estimate population size 

and sex ratio of otters. They suggested differences in marking behaviour according to sex, social, or 

reproductive status as possible reasons and encouraged further research on these issues. Furthermore, 

Brzezinski and Romanowski (2006) found that the sprainting intensity increases if spraints are 

previously removed. This raises the question, whether non-invasive genetic CMR is also affected by 

such a reaction. 

Here, we present the results of a faecal-based non-invasive genetic CMR study on a wild otter 

population in Eastern Saxony, Germany, over a period of six years. To get a better understanding of 

the marking behaviour, we first investigated the characteristics and intensity of spraint deposition and 

effects of sex and season. Subsequently, we estimated yearly population sizes and sex ratios. Using 

these population size estimates, we examined whether spraint densities are correlated with number of 

genotypes or estimated population sizes and could serve as an index for otter abundances. In a second 

manuscript (Lampa et al., chapter five), we further estimated survival and migration rates and present 

analyses on dispersal and spatial use. 

 

4.3 Methods 

4.3.1 Ethics Statement 

The field sampling did not involve capturing or handling of the protected otters. Therefore, we did not 

require permits or approvals. The accessed land is private and required permission from the fish 

farmers, although the pond areas are commonly used by the local population for walks or as passage. 
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4.3.2 Study Area 

The study area is located in the Upper Lusatian heath and pond landscape in the eastern part of 

Saxony, Germany (51°20′N, 14°19′E). Upper Lusatia covers about 5000 ha of ponds (Myšiak et al. 

2013). The tradition to build ponds and to use them for fish farming started already in the 13th century 

(Böhnert et al. 1996). Fish are harvested each autumn, followed by a wintery drainage of the ponds. 

Three-year-old fish are sold, whereas spawning and young fish (1–2 years) are reinserted to smaller 

and deeper wintering ponds. In spring, summer ponds are filled with water again and stocked with 

fish. Besides the commercial function, the ponds offer an important habitat for many endangered 

species, such as the Eurasian otter. Due to fish production, the Upper Lusatia is believed to host one of 

the biggest and most viable otter populations in Central Europe (Ansorge 1994; Klenke 1996; Ansorge 

et al. 1997). 

The study area consisted of one single pond (7.6 ha) and seven pond areas, each comprising 8–13 

ponds of varying size (0.36–39.6 ha) (Fig. 4.1). In total, the study area included 64 ponds with an 

overall water surface of 505 ha. All ponds are connected by a complex system of ditches and streams 

and framed by naturally vegetated embankments that are partly used as agricultural roads. Islands, 

extensive reed belts, and heavily vegetated peninsulas can serve as resting sites for otters and induce 

heterogeneous structures. The pond areas are surrounded by pasture, cropland, forest, roads and urban 

areas. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Study area map with recorded otter marking sites. Location of otter marking sites (red hexagons) 
in seven pond areas and one single pond in the Upper Lusatia (Saxony, Germany), where we searched for fresh 
faeces for genetic capture-mark-recapture (CMR) analyses (2006–2012). Main land use types of the surrounding 
area are outlined. 
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4.3.3 Sampling and Microsatellite Genotyping 

From 2006 to 2012 (except 2009, missing sampling year), faecal collection was done on five 

consecutive days just before (March 2006, 2010, 2011, 2012) or just after (April 2007, May 2008) fish 

relocation into summer ponds. The chosen sampling months (March–May) are considered to be off-

peak seasons for otter reproduction in Eastern Germany (Hauer et al. 2002b). 

In each year, all ponds filled with water were included in the sampling. The number of ponds varied 

over years, due to the seasonally and yearly differing water regime management (Tab. 4.1). Each 

annual faecal collection started with a pre-sampling day on which we recorded active otter marking 

sites and marked already dropped spraints to facilitate recognition of fresh spraints the next day. In the 

morning of the following five days, all freshly deposited samples were collected from known or newly 

discovered marking sites. For each sample, we recorded location of marking site, size category of 

sample (small, medium, large), its degree of sliminess (spraint, spraint plus mucus, jelly), its exposure 

level (actively exposed (e.g. scratch piles), passively exposed (e.g. stones, roots, sticks, grass tussock), 

or non-exposed), and total number of old/fresh samples found on the marking site (1–2, 3–4, > 4). For 

each fresh spraint, the external layer containing sloughed gut cells was wiped off with a cotton stick. 

Cotton sticks were placed in a separate sterile 10 ml cryovial (Biozym Scientific, Hessisch Oldendorf, 

Germany) and either extracted on the day of collection (year 2006) or stored at –80°C until extraction 

in 1.8 ml buffer ASL (Qiagen, Hilden, Germany) (years 2007–2012). 

DNA was extracted from all samples employing the QIAamp® DNA Stool Mini Kit (Qiagen), starting 

with either adding warm ASL buffer (70°C) to samples (year 2006) or warming up samples to 70°C. 

All samples were then vortexed and incubated for 2 min at room temperature before proceeding with 

step four in the manufacturer’s protocol. DNA extracts were afterwards stored at –20°C. We followed 

all precautions recommended by Lampa et al. (2013) to rigorously prevent cross-contamination during 

extraction and amplification. 

Extracted samples were genotyped using seven microsatellite markers (Lut435, Lut457, Lut604, 

Lut615, Lut701, Lut733, Lut914; Dallas & Piertney 1998; Dallas et al. 2000; Dallas et al. 2002) and 

sexed with markers Lut-SRY (Dallas et al. 2000) and DBY7Ggu (Hedmark et al. 2004). The latter was 

designed for wolverines (Gulo gulo) but also amplifies in male otters (Hedmark et al. 2004; Koelewijn 

et al. 2010). To enhance comparability of DNA fragments, the pigtail ‘GTTGCTT’ was added to the 

5´-end of reverse primers to generate a poly(A) tail at the 3´-end. Polymerase chain reaction (PCR) 

products were separated and visualised in an ABI PRISM® 3100 Genetic Analyser and analysed using 

ABI PRISM GeneMapper
 

Software V.3.7 (Applied Biosystems, Darmstadt, Germany). The nine 

loci were multiplexed in three primer sets, hereafter referred to as M1, M2, M3 (M1: Lut 457, 615, 

733; M2: Lut 435, 604, 701; M3: Lut 914, SRY, DBY7Ggu). Samples of the year 2006 were amplified 

following a variation of the multiplex pre-amplification (Bellemain & Taberlet 2004; Piggott et al. 

2004), in which two consecutive PCR reactions are carried out for each primer set (see Lampa et al. 

2008), to increase genotyping success rates and to lower genotyping error rates. For samples of 2007–
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2012, we were able to gain the same success with only one single PCR using a more sensitive 

polymerase enzyme with high-fidelity and hot-start technique (AmpliTaq Gold® 360 DNA 

Polymerase, Applied Biosystems) under the following conditions: 25 µl reaction volumes consisted of 

3 µl DNA extract, 12.5 µl AmpliTaq Gold® 360 Master Mix, 0.6 µM of each primer, and HPLC-water 

to the total volume. The hot-start Taq polymerase required an initial denaturation of 95°C for 10 min, 

followed by 45 cycles of 95°C for 30 sec, 58°C (M1, M2) or 56°C (M3) for 1 min, and 72°C for 30 

sec, ending with a final extension at 72°C for 7 min. 

Because otter faecal samples from our study area have fairly high genotyping error rates and low 

genotyping success rates (Lampa et al. 2008, 2013), the genotypes after one PCR per locus contained 

too many errors. Hence, it was crucial to repeat amplifications generating hereby a consensus 

genotype. To minimise costs and efforts, we followed a screening approach that consists of five 

amplification steps after that low-quality samples were removed according to certain thresholds 

(Lampa et al. 2013). The first amplification step was also used to screen the dataset for non-target 

species (e.g. mink). After the fifth amplification step, all samples that generated a genotype at all but 

one or two loci were repeated until a reliable genotype could be assigned to the missing markers (up to 

27 repeats). For these additional steps, we partly employed the pre-amplification approach described 

above and/or used a G/C-Enhancer buffer (included in the AmpliTaq Gold® 360 Master Mix) to 

increase success rates and to lower genotyping error rates. 

The generated consensus genotypes were compared to each other; equal genotypes were scored as 

belonging to the same individual. Similar genotypes that mismatched at one or two alleles were re-

amplified three times at the locus in question to ensure that this was not due to genotyping errors. All 

successfully genotyped samples were then amplified with the primer set M3 to identify sex. 

Individuals were identified as males after three sightings of the targeted peak. If all samples of an 

individual showed no PCR signal after three amplifications, we sexed this individual as a female. 

Individuals with less than three samples were six times amplified if no targeted peak was recorded to 

ensure that these samples derived from a female otter. 

The six datasets of each year were subsequently checked for still extant genotyping errors with 

Programme DROPOUT (McKelvey & Schwartz 2005) that determines probably erroneous samples 

(EB-test) or loci (DCH-test). Actual genotyping error rates were calculated following Broquet and 

Petit (2004) by comparing scored genotypes with the consensus genotype (see also Lampa et al. 2013). 

Amplification success rates were calculated by dividing the number of positive PCRs (PCRs showing 

at least one of the expected alleles) by the number of conducted PCRs, while genotyping success rates 

depict the number of successfully genotyped samples relative to the number of extracted otter samples. 

Mean expected heterozygosities (He) and sample size corrected probabilities of identity (PI), as well as 

PIs for siblings (PIsib) were computed over all six loci using software CERVUS 2.0 (Marshall et al. 

1998) and GIMLET 1.3.3 (Valière 2002), respectively. All calculations were done for each year 

separately and an overall mean is provided. 
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4.3.4 Marking Behaviour 

Spraints can either be food remains or a jelly like substance from the intestine, both with or without 

anal gland secretions (Trowbridge 1983; Kruuk 2006; Kean et al. 2011). For a better understanding of 

the otter marking behaviour, we first assessed whether spraint sliminess, amount, and exposure, as 

well as marking site utilisation were affected by sex. For this purpose, we pooled all successfully 

genotyped samples from all years and conducted a Pearson's chi-squared test for each of the four 

spraint characteristics. To correct for the multiple testing problem, p-values were adjusted following 

the Bonferroni-Holm correction (Holm 1979). 

To see if males and females defecate at similar rates, we compared the number of deposited spraints 

per individual first over all years taking the mean number of samples per individual applying a Mann-

Whitney-U-test. Taking the actual deposited number of scats per individual, we further tested each 

year separately for sex differences using two-sample permutation tests implemented in the R-package 

exactRankTests (Hothorn & Hornik 2013). To account for alpha error accumulation, p-values were 

adjusted according to Bonferroni-Holm procedure. 

To test for seasonal differences in the marking behaviour, we compared the three sampling months 

March, April, and May regarding faecal size and sliminess. For this comparison, we considered the 

first three years (2006–2008). Because we could not extract all collected samples in 2006 but in 2007 

and 2008, we used all yearly collected samples excluding only samples from other species than otter. 

For both spraint characteristics, we compared each year with each other employing Pearson's chi-

squared tests and adjusted the p-values for these six comparisons following the Bonferroni-Holm 

method. 

Furthermore, we were interested in whether the three different spraint types are more or less often 

placed exposed and on frequently used marking sites and whether the latter have more or less often 

exposed samples. Using Kendall rank correlation coefficients, we tested for correlations between the 

sliminess, exposure level, and number of spraints found on the respective marking site, respectively. 

For this, we pooled all samples that showed at least one expected otter allele (sure otter samples). P-

values were adjusted for the three correlations following the Bonferroni-Holm procedure. 

The statistics performed in this chapter are done in the R environment (R Development Core Team; 

www.r-project.org). 

 

4.3.5 Population Size Estimation 

We estimated population sizes for each year using closed population CMR models (Pollock et al. 

1990). These models require that birth, death, or migration between sampling occasions is negligible. 

Because our study area was large and we sampled on five consecutive days outside the main 

reproductive period, these assumptions are very likely met (compare otters biology (Kruuk 2006). 

Since it is unlikely that all genotyping errors were completely eliminated from the datasets (Lampa et 

al. 2013), we employed the error-incorporating misidentification model from Lukacs and Burnham 
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(2005a) (hereafter L&B estimator) implemented in Program MARK (White & Burnham 1999). The 

L&B estimator adds to each closed population model available in MARK the misidentification 

parameter α – the probability of a correct classification. An alpha close to 1 indicates a low probability 

of still extant genotyping errors. 

We estimated separately for each year the population size ( ෡ܰ), conditional capture (p) and recapture 

(c) probability, probability of a correct classification (α), and number of genotypes never captured (f0). 

We fitted a variety of models to the data that incorporated no capture variation (M0), individual (Mh), 

behavioural M(b), or daily varying (Mt) catchability and combinations thereof (Mbh, Mth, Mtb). Since 

we observed a daily increase in the number of collected samples that peaked in the third or fourth 

sampling day and mostly decreased on the fifth day, we tested if this pattern was introduced by already 

sampled otters that displayed a daily changing recapture rate (c1, c2, c3, c4), while the probability to be 

newly captured (p) remained constant. Each model was fitted with and without a sex difference. 

According to the MARK help file (White & Burnham 1999) individual heterogeneity (pi) is difficult to 

be separated from misidentification (α), incorporating both can lead to inconclusive results. Whenever 

pi and α were only poorly estimable, we dropped it from the candidate model set. Models were 

adjusted for correct parameter counts where confounding or estimates at the boundary required it. 

We ranked models employing corrected Akaike’s Information Criterion (AICc) that accounts for small 

sample sizes (Sugiura 1978; Hurvich & Tsai 1989). Using normalised AICc weights, reflecting the 

likelihood of a model (Burnham & Anderson 2002), we calculated a weighted average for all 

parameter estimates ( ෡ܰ, p, c, α, f0). If supported models had unidentifiable parameters, a weighted 

average estimate for the unidentifiable parameter was calculated by dropping the respective model, but 

not for estimates of identifiable parameters. The model weighted average capture and recapture 

probabilities were weighted once more by the respective weighted average pi-value (heterogeneity 

parameter) and summarised for each day to receive a daily re/capture probability. Using the obtained 

weighted average population sizes of each year, we calculated population densities per water area (in 

ha), per km shoreline, and for the total area studied. 

Finally, we wanted to test the hypothesis that spraint densities are good indicators for otter densities. 

Similar as in Lanszki et al. (2008), we used a linear regression to check whether yearly numbers of 

genotyped scats per ha explain yearly numbers of genotyped individuals per ha or yearly numbers of 

estimated individuals per ha. 

 

4.4 Results 

4.4.1 Sampling and Microsatellite Genotyping 

Out of 2132 collected faecal samples, 2001 were extracted (Tab. 4.1). After the first three 

amplifications with the multiplex trio M1 several samples could be identified as non-otter samples, 

being either mink (Neovison vison) or from other unknown species (Tab. 4.1). By using reference 

mink samples from an animal park in Leipzig, Germany, we found that Lut457 and Lut615 were 
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monomorphic (with 120bp and 95bp, respectively) and Lut733 polymorphic (142, 146, 150, or 154bp) 

in minks, all showing much shorter PCR products than the expected otter alleles. This resulted in 

fewer, namely 1822, potential otter samples. Since some of these samples (30.1%) did not produce any 

PCR product at all, they may also belong to other species. Hence the numbers of samples for which we 

recorded at least one expected otter allele decreased to 1273 (Tab. 4.1). 

 

Table 4.1 Results of  faecal‐based genetic CMR samplings  (2006–2012)  from a wild otter population  living  in 
pond areas in Upper Lusatia (Saxony, Germany). Water surface: sum of all ponds filled with water. Sure otter 
samples: samples for which we recorded at  least one expected otter allele. Sure mink samples: samples that 
were  identified  as mink.  Unknown  samples:  samples  that  did  not  produce  any  PCR  product.  Genotyped 
samples: samples successfully genotyped on seven microsatellites and successfully sexed. 

Sampling 
time 

Water 
surface 
(ha) 

Active 
marking 
sites 

Collec‐
ted 
samples 

Extrac‐
ted 
samples 

Sure 
otter 
samples 

Sure 
mink 
samples 

Other 
species 

Un‐
known 
samples 

Geno‐
typed 
samples 

Geno‐
types 

27–31 Mar 2006  261  130  356  257 199 7 0 51  121  22

23–27 Apr 2007  399  92  282  270 211 7 0 52  134  30

26–30 May 2008  449  87  198  196 136 7 1 52  96  22

22–26 Mar 2010  294  172  381  367 204 50 3 110  130  21

28–1 Mar/Apr 2011  366  173  461  459 239 57 7 156  138  26

27–31 Mar 2012  360  159  454  452 284 33 7 128  159  24

Total    505  384  2132  2001 1273 161 18 549  778  84

Mean        355.3  333.5 212.2 26.8 3 91.5  129.7  24.2

 

We were able to obtain complete multilocus genotypes for 778 samples (Tab. 4.1), with a mean 

genotyping success rate over the years of 44.2% considering all potential otter samples (range: 34.9% 

(2011) – 51.1% (2008)) or 62.1% considering only verified otter samples (range: 57.7% (2011) – 

70.6% (2008)). The mean amplification success rate for the autosomal markers over all samples, loci, 

and years amounted to 79.9% (range: 75.5% (2006) – 83.6% (2008)). The two gonosomal markers 

showed amplification success rates over all years of 87.3% for Lut-SRY (range: 83.1% (2010) – 

91.8% (2012)) and of 54.2% for DBY7Ggu (range: 40.9% (2010) – 80% (2007)). The mean expected 

heterozygosity over the years amounted to 0.51 (range: 0.49 (2011) – 0.54 (2006)), whereas the 

observed heterozygosity reached on average 0.6 (range: 0.54 (2011/2012) – 0.65 (2006)). The 

probability that two different individuals share the same genotype (PI) was sufficiently low. The 

theoretical unbiased PI ranged between 5.3 × 10-5 (2006) and 1.6 × 10-4 (2010) and the PIsib between 

1.6 × 10-2 (2006) and 2.4 × 10-2 (2011). 

Genotyping error rates over all years amounted to 48.9% with an AD rate of 45.1% (range: 39.3% 

(2012) – 48% (2006)) and a FA rate of 3.8% (range: 2.9% (2006) – 4.6% (2012)). The two tests in 

Programme DROPOUT (McKelvey & Schwartz 2005) indicated that no locus had significantly more 

errors than any other locus (DCH-test) and there was thus no need to drop any locus. However, in 

2006, 2007, and 2011 artificially 4–5 new individuals were produced compared to only two new 

individuals in the other years. Also the numbers of mismatching loci in the EB-test showed a bimodal 

distribution in 2006 and too many 1MM and 2 MM pairs in 2007 and 2011. Hence, although we 
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amplified each sample on average 5.6 times per loci (range 3–27), datasets are likely to still contain 

genotyping errors. Since further replications would probably not eradicate all errors, it was necessary 

to employ analysis methods that can incorporate genotyping errors. 

The genotyped samples could be pooled to 79 distinct genotypes out of which five dyads showed 

different sexes resulting in 84 different individuals (43 ♂, 41 ♀). Out of these, 46 individuals (27 ♂, 

19 ♀) were only found in one of the six years, 21 (10 ♂, 11 ♀) in two years (not necessarily 

consecutive years), 11 (5 ♂, 6 ♀) in three years, and 6 (1 ♂, 5 ♀) individuals were found in four years. 

 

4.4.2 Marking Behaviour 

Testing size, sliminess, exposedness, and marking site utilisation for differences in sex revealed that 

only sliminess was significantly different between males and females (Pearson’s chi-squared test: χ² = 

9.6, df = 2, p-adjusted = 0.0082). Males significantly defecated more often jelly samples and less often 

spraints than females (Fig. 4.2). 

 

Figure 4.2 Sex differences in otter marking behaviour. Frequency of genotyped otter samples regarding (A) 
their sliminess (spraint, spraint plus mucus, jelly samples), (B) their size (small, medium, large), (C) their level 
of exposedness (non-exposed, passively exposed, actively exposed), and (D) the number of otter faeces at the 
specific marking site (1–2, 3–4, >4 samples); all four separated by sex. Only sliminess showed a significant sex 
difference in a Pearson’s chi-squared test (χ² = 9.6, df = 2, p-adjusted = 0.0082). 

 

The maximum number of scats deposited by one individual within a yearly sampling period amounted 

to 26. Within one night, individuals defecated on average 1.76 spraints with a maximum of 11. Both 

maxima were generated by males. However, taken over all years sex had no significant effect on the 

number of deposited scats (U-test: W = 971.5, p = 0.4189; mean-males = 4.9, median-males = 4, mean-

females = 4.7, median-females = 4.5). Hence, there were also no significant differences within a year 

(permutation tests: p-2006 = 0.51; p-2007 = 0.46; p-2008 = 0.22; p-2010 = 0.083; p-2011 = 0.28; p-2012 = 0.97). 
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Comparing the three different sampling months (March, April, May) revealed that the size of samples 

varied significantly between March and April (Pearson’s chi-squared test: χ² = 17.1, df = 2, p-adjusted = 

0.0008) and between April and May (χ² = 9.7, df = 2, p-adjusted = 0.02), with April having more small 

but less medium and large samples than March or May. Regarding sliminess, the samples in March 

significantly differed to samples in April and May (Pearson’s chi-squared test: March ~ April: χ² = 

21.95, df = 2, p-adjusted = 8.6 × 10-05; March ~ May: χ² = 22.5, df = 2, p-adjusted = 7.7 × 10-05). They 

consisted more often of spraints with mucus (March: 49.3%, April: 32%, May: 0.28%) and less often 

without mucus (March: 32.9%, April 49.8%, May: 48.4%). No year differed in the number of jelly 

samples (March: 17.9%, April: 18.1%, May: 23.4%). 

The correlations between sliminess, exposedness, and numbers of samples in a respective marking site 

showed that the more slime a sample consists of the more often it is placed exposed (more often 

actively than passively), whereas less slimy spraints are more often deposited in a non-exposed way 

(Kendall’s tau = 0.087, z = 3.47, p-adjusted = 0.0011). On marking sites that were not used the days 

before, we found less often jelly samples than on marking sites with at least five old/fresh spraints 

(Kendall’s tau = 0.063, z = 2.52, p = 0.012). When correlating the exposedness with the number of 

samples on a marking site, the results showed that the more samples are deposited on a marking site 

the more likely they are actively exposed (Kendall’s tau = 0.16, z = 6.42, p-adjusted = 4.23 × 10-10). 

 

4.4.3 Population Size Estimation 

In some years we had to drop individual heterogeneity models from the candidate model set because 

heterogeneity was confounded with misidentification (Tab. 4.2). All models with sex-dependent 

parameters (pi, p, c, α, f0) showed no significant difference in a likelihood-ratio test compared to the 

respective model without the sex effect and were always ranked lower with ΔAICc between 3.9 and 29 

(mean = 12.1). Thus, these models were dropped from the candidate model set. The model and pi 

(within year capture heterogeneity) weighted average capture probabilities (p) were relatively high for 

each year (0.48–0.75; mean = 0.57), whereas the model and pi weighted average recapture 

probabilities (c) were even higher (0.54–0.79; mean = 0.65). Except of year 2010, where we found 

equal but very high re/capture rates, the recapture probability was always higher than the capture 

probability, with differences between 0.011–0.23 (mean = 0.08) (Tab. 4.2). 

The average misidentification parameter α ranged between 0.73 and 0.95 (mean = 0.85), indicating 

that each year’s dataset still harboured ghost individuals and hence genotyping errors. The population 

size estimates ( ෡ܰ) of all models for a particular year were very similar, even for those having AICc 

weights < 0.01. The model weighted average population size using AICc weights for each year ranged 

between 15 (2010) and 26 (2011) individuals (mean = 21) (Tab. 4.2). In four years (2007/10/11/12), 

we had more females than males with sex ratios, as a male to female mean, ranging between 0.67 and 

0.88. In 2008 the sex ratio equalled 1 and in 2006 we found more males than females with a sex ratio 

of 1.2. 
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Using average population sizes, otter densities in our study area ranged from 0.048 (2008) to 0.072 

(2006) otters per ha pond (mean = 0.06), from 0.34 (2008) to 0.48 (2006/2007) otters per km pond 

shore (mean = 0.42), and from 0.004 (2010) to 0.007 (2007) otter per ha area regarding the entire 

study area (36 km²) (mean = 0.0058). 

A linear regression between yearly numbers of genotyped samples per ha and yearly numbers of 

different genotypes per ha showed an almost significant relationship (R² = 0.62, df = 4, p = 0.063, Fig. 

3). Whereas, yearly numbers of genotyped samples per ha and yearly numbers of estimated individuals 

per ha showed no relationship (R² = 0.24, df = 4, p = 0.33, Fig 4.3). 

 

Figure 4.3 Relationship between spraint densities and otter numbers. Linear regressions between number of 
genotyped otter samples per ha (S) and (A) number of genotypes per ha (G) (R² = 0.62, df = 4, p = 0.063) and 
(B) number of estimated individuals (E) (R² = 0.24, df = 4, p = 0.33), respectively. Equations for both 
regressions are offered. 
 

4.5 Discussion 

4.5.1 Sampling and Microsatellite Genotyping 

Since most of the otter-specific microsatellites from Dallas and Piertney (1998) can also be used to 

detect other mustelids, such as the mink, we were able to distinguish between minks and otters (except 

of those samples that did not produce a single peak). 

Here it is remarkable that although we did not change our sampling design or the way of sampling, the 

number of collected mink scats was about two to six-fold higher in the years 2010–2012 compared to 

2006–2008. For the same period of time, we were able to receive numbers of harvested minks (minks 

per trapnights – MPT) for one of our pond areas (100 ha) that clearly demonstrated an increase in 

minks: MPT2008 = 0.028; MPT2009 = 0.021; MPT2010 = 0.091 (kindly provided by A. Lehmann). For 

comparison, a saturated mink population in ca. 120 ha of the river Thames amounted to MPT = 0.04 

using live-traps and including recaptures (Yamaguchi & MacDonald 2003). This implies that contrary 

to most studies stating that high otter densities are likely to entail a decline in mink densities (Bonesi 

& Macdonald 2004b; Bonesi et al. 2006; McDonald et al. 2007), the mink proliferated quite well in 
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our study area despite high otter densities. Similarly, Harrington et al. (2009) found that mink 

abundances remained relatively high while otter densities raised. 

Bonesi and Macdonald (2004a) stated that mink may persist in the presence of otters when terrestrial 

prey is abundant. The Upper Lusatian pond landscape is known for a high diversity in amphibians, 

reptiles, water birds, and small mammals (Böhnert et al. 1996). However, most of the mink scats were 

collected because they contained fish remains, making them more similar to otter spraints. If minks 

coexist with otters, Bueno (1996) found that minks prey on smaller fishes than otters, which might 

well be so for our study area. Beside mink scats containing fish remains, we also unintentionally 

collected mink scats that looked like otter jelly samples. Dunstone (1993) already pointed out that 

mink can produce a jelly-like secretion. The mink samples were not only collected by students but also 

by expert collectors. The same difficulty was already noted by Harrington et al. (2010). In their study 

not a single supposed mink sample collected by experts was of mink origin; rather they belonged to 

pine martens (47%), foxes (41%), otters (6%), polecats (3%), or stoats (3%). In our study, fresh mink 

samples were found on typical otter marking sites, sometimes next to fresh otter samples from the 

same night. This implies that otter monitoring solely relying on otter spraints without genetically 

determining the species run the risk of overestimating abundance or occupancy if minks are present. 

Our microsatellites were only moderately variable regarding observed heterozygosity and had low 

numbers of alleles. This is consistent with other studies on otters in Europe (Hajkova et al. 2007; 

Janssens et al. 2008; Mucci et al. 2010). Although the loci achieved acceptable low theoretical 

unbiased PIs to be able to distinguish between unrelated individuals (see Lampa et al. 2013), we had 

five dyads that had identical genotypes at the autosomal markers but different sexes. In two cases both 

individuals of the dyad were either found dead subsequently or in several years or by a high number of 

samples within a year (≥ 9) and are hence likely to exist and to be closely related (e.g. siblings). For 

the remaining three dyads, one sex (2 ♂, 1 ♀) was only represented by a single sample in a given year 

and could thus be an erroneously sexed sample. Since further repetitions could not prove this and since 

it applied to both sexes, we treated the found genotypes to be real ones. 

The genotyping error rate (GER) was quite stable over the six sampling years (range: 0.44 (2012) – 

0.51 (2006)), but fairly high compared to other otter studies that used the same way of calculation 

(Hung et al. 2004: GER = 31.9%; Hajkova et al. 2009: GER = 20.9%; Koelewijn et al. 2010: GER = 

17.3%; Bonesi et al. 2013: GER = 18.1%). One reason might be the comparable high number of 

repetitions (up to 26 times) to gain increased genotyping success rates. Because of this high error rate 

and the low genotyping success, we followed a rigorous protocol including various contamination 

preventions during extraction and amplification, a screening approach to exclude low quality samples, 

and the generation of consensus genotypes via high numbers of repetitions (Lampa et al. 2013). 

Although those steps minimised errors they could not save us from having still undetected errors in the 

consensus genotypes. Also the two tests in DROPOUT and the misidentification parameter α indicated 

that errors might still be present in the yearly datasets. Therefore, it is crucial to use population size 
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estimators that account for genotyping errors if they cannot be entirely removed (Creel et al. 2003; 

Marucco et al. 2011; Lampa et al. 2013). All further here implemented statistical tests are less 

sensitive to ghost individuals as either individual identification was not relevant (e.g. correlations 

between sample characteristics) or if relevant we only differentiated between sexes. Since there was no 

significant difference in the number of single samples – that are potential ghost individuals – between 

both sexes and since re/capture probabilities were equal between males and females, the number of 

ghost individuals should be evenly distributed among sexes. Thus, we regard the results of the tests for 

marking behaviour as trustworthy. 

 

4.5.2 Sex Differences in Marking Behaviour 

Spraint is used for intraspecific communication, but there are different opinions about what 

information is transmitted to other otters. Kruuk (1992, 2006) postulated that spraints play a major role 

in resource partitioning, meaning the use of a resource is advertised by markings, and that it has 

probably no function in territory defence or sexual communication. Albeit, he admits that “spraints 

have the potential for carrying many other messages” and that “their exact information content will not 

be known to us for a long time to come”. In contrast, Kean et al. (2011) demonstrated that volatile 

compounds from anal gland secretions differed in age and for adults also in sex and with reproductive 

status, suggesting a function in sexual communication. In line with these findings, we showed that 

although the number of markings did not significantly vary between sexes, jelly samples were more 

frequently defecated by males and placed exposed on previously used marking sites with several 

old/fresh scats. This indicates that especially jelly samples have a special role either in sexual 

communication or for another sex-dependent function, such as social status as found for river otters 

(Rostain et al. 2004). A function in sexual communication was also postulated by Remonti et al. 

(2011). Kruuk (1992) stated that such a function would require differences in sprainting behaviour and 

rates between the sexes and a seasonality synchronised with the breeding season. Although births 

occur throughout the year in our study area, there is a peak in summer months (Hauer et al. 2002b). 

With a gestation period of 61–74 days (Kruuk 2006), a mating peak should then be in spring. In our 

study, the amount of anal gland secretions on faeces decreased in later spring (April/May), whereas the 

number of jelly samples slightly increased. This, together with the found sex difference, could be 

another indication for a function of spraints in sexual communication. 

 

4.5.3 Sex ratio 

The true sex ratio of otter populations is so far unknown. Sidorovich (1991) found an almost equal 

(only slightly male-biased) sex ratio of new born cups (♂/♀ = 1.125) and at the age of three months 

(♂/♀ = 1.09). Since females have lower mortality rates than males (Lampa et al., chapter five), a 

female biased sex ratio is to be expected and was observed by Kruuk (2006) (♂/♀ = 0.83). However, 

most studies employing non-invasive genetic sampling (Dallas et al. 2003; Kalz et al. 2006; Arrendal 
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et al. 2007; Janssens et al. 2008; Hajkova et al. 2009; Lanszki et al. 2010; Bonesi et al. 2013) found 

more males both in number of samples and individuals. Therefore, Bonesi et al. (2013) questioned the 

usefulness of non-invasive sampling to estimate population size and sex ratios of otters. We only 

found more males in year 2006, but an even sex ratio in 2008 and more females in the remaining four 

sampling years. When comparing the 95% confidence intervals (CI) of the estimated number of 

individuals per sex (Tab. 4.2), the last two years (2011–2012) showed non-overlapping CIs and thus a 

female bias. Hence, our results seemed to better reflect the likely natural sex ratio. For 2006, we 

possibly found more males because we had to cull 99 samples and although those were randomly 

chosen regarding their origin, we preferred analysing samples with higher success rates, hence jelly 

samples (Hajkova et al. 2006; Lampa et al. 2008), which more likely are deposited by males (this 

study). In all other years, we extracted all collected samples and tried to genotype also lower quality 

samples by persistent repetitions, only dropping samples with no chances to gain a complete 

multilocus genotype. This might explain the balanced or female-biased sex ratios. 

Furthermore, we found that jelly samples were more often placed exposed on more frequently used 

marking sites with several other faeces. These „hot spots“ are usually larger and more prominent, thus 

easier to find (e.g. markings sites under bridges). Hence, in some studies a preference of such marking 

sites might have also resulted into male-biased sex ratios. Therefore, we agree with Bonesi et al. 

(2013) that non-invasive genetic sampling on otters has to account for their marking behaviour to gain 

information about sex ratios. Our results indicate that it could be crucial to not drop too many low 

quality samples, but to invest in replications increasing the overall genotyping success and the 

numbers of females successfully genotyped, and to include all kinds of marking sites in a study design, 

also less frequently used sites, to minimise the risk of collecting only a fraction of a population. 

 

4.5.4 Behavioural Response of Sampled Otters 

Compared to the capture rates, we observed higher recapture rates in almost all sampling years – 

except of in 2010 were both rates were comparably high. This could be due to a changed sampling 

protocol in 2010: larger faeces were first sampled with a cotton swab for genetic analyses and then 

entirely taken for hormone analyses. In all other years faecal samples were not removed. As otters 

reuse their marking sites for many years and also daily (Kruuk 2006), higher recapture rates could be 

collector-induced if they searched more intensely on known marking sites or if they found more 

samples after a settling-in period (e.g. first 1–2 days). However, 71.1% of the individuals either never 

reused marking sites (45.9%) or reused one marking site at maximum twice within the five sampling 

days (25.2%). We also found no difference in the sampling patterns (e.g. settling-in period) between 

expert collectors and students. Another possibility is that already collected otters reacted on the 

frequent treatment of their spraints with an increased marking intensity. Such a behavioural response 

is called “trap-happiness”. It is known that otters use spraints for intraspecific communication (Kruuk 

1992, 2006) and so it could well be that they will notice if somebody handled and thus altered their 
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markings. This could put them on the alert resulting in a higher marking intensity. Such behaviour was 

also found by Brzezinski and Romanowski (2006), who conducted an experimental approach and 

found higher sprainting intensity on sites where spraints were previously removed. Removing spraints 

in 2010 may have disturbed the intraspecific communication such that also unsampled individuals 

increased their marking intensity or at least used marking sites that were seemingly free of any usage 

because of previous faecal removing. This is reasonable as the same marking site was used by up to 

six different individuals within five sampling days (Lampa et al., chapter five). Regardless of whether 

the behavioural effect is collector- or otter-induced, it is important to account for this when estimating 

population size of otters (i.e. by including Mb), otherwise the results can be severely biased. 

 

4.5.5 Population Size Estimates 

Comparing the number of genotyped and estimated individuals, each year had one to six more 

genotyped than estimated individuals. If the actual number was not underestimated, we captured most 

resident individuals, which can be explained by the high sampling intensity. 

Most studies estimating otter densities were conducted at rivers, streams, or ditches (Sidorovich 1991; 

Hung et al. 2004; Prigioni et al. 2006; Lanszki et al. 2008; Ruiz-Olmo et al. 2011), some at lakes or 

coasts (Erlinge 1968; Kalz et al. 2006; Kruuk 2006), but only a few in fish pond landscapes (Hajkova 

et al. 2009; Lanszki et al. 2010) (Tab. 4.3). While densities seem to be lower at rivers and lakes than in 

fish pond landscapes (Tab. 4.3), one needs to bear in mind that comparability is limited because of 

different methods and water body shapes. Two studies, that also investigated fish pond landscapes 

employing non-invasive genetic methods, obtained higher estimates per total area (Hajkova et al. 

2009) or per km pondside (Lanszki et al. 2010; Tab. 4.3). Besides differences in pond sizes and overall 

landscape structures, methodological reasons could also account for this difference, because neither 

Hajkova et al. (2009) nor Lanszki et al. (2010) accounted for genotyping errors. The former used an 

estimation method, CAPWIRE (Miller et al. 2005), that does not account for genotyping errors. The 

latter counted the number of genotypes without employing population size estimators. If we would 

have used the same approaches, our densities would have been larger and comparable to both studies 

(0.006–0.009 otter per ha area using CAPWIRE; 0.35–0.56 otter per km pond shore using number of 

genotypes). 

For Upper Lusatia, Ansorge (1994) reported densities of 0.001–0.0013 adults per ha area. These 

estimates are derived on the basis of expert knowledge and only referred to adult otters, whereas our 

estimates included all age classes. Adding juveniles and subadults (≤ 2 years) to Ansorge’s (1994) 

guesstimate, that comprise about 38–69% of the population (Erlinge 1968; Ansorge et al. 1997), 

population density would increase to up to 0.002 otters per ha area, about half of our estimates 

(Tab.4.3). The guesstimates of Ansorge (1994) apply to the early 1990ies, a time period during which 

otters in Upper Lusatia were believed to still increase in density (Klenke et al. 2013). For the period 

covered by us (2006–2012), there is no indication that the density is still growing.  
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Table  4.3  Otter  densities  of  different  studies including  information  on  studied  habitats  and  on  employed 
methods. For a comparison, we included results of this study (bold). 

Study  Otter per  
ha area 

Otter per ha 
water area 

Otter per km 
shoreline 

Habitat 
studied 

Method 
used 

This study  0.004–0.007  0.048–0.072  0.34–0.48  Fish ponds  Non‐invasive genetic 
CMR 

Ansorge (1994)  0.001–0.0013 
(adults) 

    Fish ponds  Expert knowledge 

Erlinge (1968)    0.007–0.01  0.33–0.5 1; 0.2 2  Lakes 1, rivers 2  Tracking footprints and 
spraints 

Hajkova et al. (2009)  0.0076–0.00811    0.22–0.262  Fish ponds1, rivers2  Non‐invasive genetic  
CMR 

Hung et al. (2004)      1.5–1.8  Rivers  Non‐invasive 
microsatellite genotyping 
(MNA) 

Kalz et al. (2006)  0.0016  0.013  0.21  Lakes, rivers  Non‐invasive 
microsatellite genotyping 
(MNA) 

Koelewijn et al. (2010) 
(reintroduced pop.) 

0.0025–0.0034      Lakes, ponds, rivers  Non‐invasive genetic CMR

Kruuk et al. (1989)      0.5–0.7 Coastal habitat Census of otter holts

Lanszki et al. (2008)      0.17  Rivers, backwater  Non‐invasive 
microsatellite genotyping 
(MNA) 

Lanszki et al. (2010)    0.018–0.046  0.35–1.2  Fish ponds  Non‐invasive 
microsatellite genotyping 
(MNA) 

Prigioni et al. (2006)      0.18–0.2  Rivers  Non‐invasive 
microsatellite genotyping 
(AC) 

Ruiz‐Olmo et al. (2011)    0.015–0.063 0.07–0.26 Rivers Direct census 

Sidorovich (1991)      0.02–0.4  Rivers, backwater  Direct census, tracking of 
footprints 

CMR – capture‐mark‐recapture analyses 
MNA – minimum number alive (no estimation only number of genotypes) 
AC – accumulation curve (e.g. Kohn et al. 1999) 

 

4.5.6 Spraint Densities as Index of Otter Numbers 

It has been argued that spraint density can be used as an index of abundance for comparison of 

populations in time or in space (Mason & Macdonald 1987). Hence, it was applied in several studies 

(see Reuther et al. 2000 for a review). A non-invasive genetic study even found a significant positive 

relation between spraint density and number of genotypes per area (Lanszki et al. 2008). In our study 

this relationship also was close to significance. However, when relating the spraint density with the 

number of estimated individuals this positive correlation vanished. Even when comparing only the 

four sampling years (2006, 2010–2012) where we always sampled end of March, there was no 

relationship between number of individuals and samples (R² = 0.02, df = 2, p = 0.87). This can be 

explained by the removal of ghost individuals, which was not the case in the study by Lanszki et al. 

(2008), who used the number of genotypes. It is natural that the more samples one collects in an area 

or a period, the more ghost individuals will be in the dataset and thus the more genotypes one will 

have. Hence, in line with other authors (Kruuk et al. 1986; Chanin 2003), we caution against the 

extrapolation of otter spraint densities to relative abundances. An extrapolation is even more 
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precarious to use given that a) mink faeces (if present) can be easily confused with otter spraints (see 

discussion above), b) number of samples vary seasonal (see discussion above), c) sampling rate 

(collector-induced) or marking intensity (otter-induced) can increase during several-day sampling 

periods (see discussion above), and d) one marking site is used by up to six individuals (Lampa et al., 

chapter five). 

 

4.5.7 Conclusion 

Faeces are a valuable source to gain information about population sizes and sex ratios via the use of 

genetic mark-recapture when potential error sources are carefully addressed and the marking 

behaviour of the target species is taken into account. We illustrated how sex differences in the marking 

behaviour can influence non-invasive genetic CMR, because high DNA quality jelly samples were 

more often defecated by males than by females and placed exposed on frequently used marking sites 

that are easier to find for collectors. Hence, it is crucial to not only concentrate on sampling jelly 

samples or on prominent marking sites. Furthermore, we recommend investing in high genotyping 

success rates by sufficient numbers of repetitions to ensure unbiased sex ratios and decreased 

genotyping error rates. Because of either collector-induced varying sampling intensity or a behavioural 

response of otters on spraint handling and removing, researchers should employ models that can 

account for a behavioural effect to receive unbiased estimates. Even when using high quality samples, 

researchers should use CMR models that incorporate genotyping errors to avoid overestimates, since it 

is difficult to completely exclude genotyping errors (Lampa et al. 2013). Our study further shows that 

faecal densities are not a reliable index for otter abundances because of variability in marking 

behaviour and because of the risk of confusion with mink faeces even by experts. Similar problems 

may exist for other elusive species. Therefore, we strongly recommend testing the reliability of faecal 

densities as index of abundance with genetic CMR methods before using them for monitoring elusive 

species. 
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5.1 Abstract 

We used non-invasive genetic capture-mark-recapture (CMR) to receive data about survival, 

migration, sex-biased dispersal, and spatial use of a wild otter population. This population, located in 

the Upper Lusatia (Saxony, Germany) – a region dominated by commercially used fish ponds – was 

studied over a period of six years (2006–2012). Overall, we collected 2132 otter faeces, generated 778 

multilocus genotypes employing eight microsatellite loci, and found 84 distinct individual genotypes. 

Using misidentification robust design models in Programme MARK, we found higher survival rates 

for females (Φ = 0.82 ± 0.07) than for males (Φ = 0.71 ± 0.08) and a higher probability to leave and 

enter the study area for males (γ´´mean = 0.31; (1 – γ´) mean = 0.31) than for females (γ´´ mean = 0.27; (1 – 

γ´) mean = 0.26). Males also showed a significantly higher mobility within our study area both within a 

sampling year and between sampling years. Comparing male-male and female-female relatedness (R) 

revealed a probable male-biased dispersal with closer relatedness among females (Rmean = 0.2 or 0.3) 

than among males (Rmean = 0.15 or 0.17). The estimated activity range indices of sub-/adults were 

larger for males (mean = 26.1 ha; median = 9.4 ha) than for females (mean = 10.9 ha; median = 7.3 

ha). Employing a linear mixed-effect model (LME), we demonstrated that male activity range indices 

were significantly larger and increased stronger with number of marking sites (or alternatively age) 

compared to females. Overlaps in activity ranges were frequently found both between same-sex and 

opposite-sex dyads. The extent of overlap positively correlated with relatedness for same-sex dyads, 

but negatively for opposite-sex dyads. The unusual high proportion of activity range overlaps between 

same-sex dyads could hint to spatial and/or social structures that are specially adapted to highly 

productive fish pond systems. 

 

5.2 Introduction 

Effective management and conservation of elusive, rare, and threatened animal species require 

accurate estimates of abundance or population dynamic parameters, such as survival, migration, or 

dispersal. However, this information is difficult to obtain. Here, non-invasive genetic sampling in 

combination with capture-mark-recapture (CMR) opened up new possibilities. Non-invasively 

collected samples, such as hair or faeces, serve as DNA source to generate multilocus genotypes for 

individual identification. Genotypes are either gained by amplifying several microsatellite loci or 

nucleotide polymorphisms (SNP). Once individuals are genetically tagged, repeated sampling enables 

to track individuals in time, producing capture-recapture histories that can be analysed with CMR 

models. With the aid of non-invasive genetic CMR a bunch of information on elusive species can be 

gained, such as population sizes and trends over time, survival, migration, growth rate, or fecundity 

(Lukacs & Burnham 2005b). 

The Eurasian otter (Lutra lutra) is one example for an elusive, rare, and threatened species that is of 

conservation concern. The species suffered a massive decline in Europe since the end of the 19th 

century caused by hunting and man-made changes of their aquatic habitat such as water pollution and 
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habitat destruction involving a decrease of their prey species, mainly fish (Kruuk 2006; Ruiz-Olmo et 

al. 2008). As a result, the otter is nowadays strictly protected under international legislation and 

conventions (Ruiz-Olmo et al. 2008) and started to rise and to expand again throughout Europe 

(Reuther 2004; Kruuk 2006). However, still little is known about actual population sizes and their 

changes in areas where previous estimates were made (Kruuk 2006). Also precise estimates on 

survival and migration rates or on dispersal are still scarce. 

Moreover, most studies on otters were carried out on rivers, lakes, or coastal habitats, but only little is 

known about otters living mainly on fish ponds. Landscapes dominated by fish ponds used for 

commercial fish farming are important habitats for otters, which functioned as haven during their 

massive decline (Kranz 2000). Naturally, otter densities can become very high in these areas evoking 

conflicts with fish farmers (Kranz 2000; Klenke et al. 2013). Because of this conflict and because otter 

populations in fish pond systems can function as a source for recolonisation of surrounding, 

uninhabitat areas, otters in fish pond systems are of considerable interest in applied conservation. 

Regarding survival, so far only one study estimated survival rates based on non-invasive genetic data 

for otters living on lakes and rivers in southern Sweden (Arrendal 2007). Other studies inferred 

mortality rates from carcase sampling by constructing life tables (Kruuk & Conroy 1991; Ansorge et 

al. 1997). Life table construction from carcases require rather strict assumptions, such as reflecting the 

true structure of living populations, which often is not the case (Hauer et al. 2002a). 

Males seemed to be much more on the move than females, at least in coastal habitats (Kruuk 2006) 

and on lakes (Erlinge 1967). However, no quantitative data underlay these statements and for other 

aquatic habitats (e.g. fish ponds) this issue remains unexplored. A sex bias was also postulated for 

dispersal. Most studies based this supposition either on faecal distributions in a study area (Janssens et 

al. 2008; Koelewijn et al. 2010) or on telemetry data (Quaglietta et al. 2013) or visual observations 

(Kruuk 2006) of a few individuals. Only one study employed genetic methods and found a negative 

correlation between relatedness and geographical distance for females but not for males and deduced a 

male bias in dispersal (Quaglietta et al. 2013). 

Several studies were carried out to estimate sizes of home ranges or core areas (Erlinge 1967; Kruuk & 

Moorhouse 1991; Hung et al. 2004; Quaglietta et al. 2014), but all on rivers, lakes, or coastal areas and 

little is known about fish pond systems. Because of the concentration of water bodies in a small space, 

fish pond systems may force otters to a changed spatial use also in terms of home range sharing. 

Since otters use their faeces, so-called spraints, for intraspecific communication, they tend to deposit it 

on conspicuous points throughout their home range (Kruuk 1992). These often well-established 

marking sites are used by all members of a population regardless of their sex, age, or status (Kruuk 

2006) and can be easily found by collectors. Hence, otter faeces can act as a suitable non-invasive 

DNA source for the application of microsatellite genotyping and subsequent CMR analyses. 

Here, we present the results of a faecal-based non-invasive genetic CMR study on a wild otter 

population in Eastern Saxony, Germany, over a period of six years. While genetic analyses, marking 
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behaviour, and estimates of population sizes are discussed elsewhere (Lampa et al., chapter four), we 

used exactly the same data focusing on estimates of apparent survival and temporary emigration using 

Programme MARK (White & Burnham 1999). We further investigated sex differences in dispersal 

and spatial use and tested whether overlaps in spatial use are correlated with the degree of relatedness. 

 

5.3 Methods 

5.3.1 Ethics Statement 

Since the field sampling did not involve capturing or handling of the protected otter, we did not 

require permits or approvals. Although local people commonly used the pond areas for walks or as 

passages, it is private land and access permits were obtained from the fish farmers. 

 

5.3.2 Study Area 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Study area map with recorded otter marking sites. Location of otter marking sites (red hexagons) 
in seven pond areas and one single pond in Upper Lusatia (Saxony, Germany), where we searched for fresh 
faeces for genetic capture-mark-recapture (CMR) analyses (2006–2012). Main land use types of the surrounding 
area are outlined. 
 

Our study area is located in the Upper Lusatian heath and pond landscape in Eastern Saxony, Germany 

(see Lampa et al., chapter four for a detailed description). Upper Lusatia is characterised by hundreds 

of ponds covering about 5000 ha, mostly used for fish farming (Myšiak et al. 2013). Therefore, the 

region hosts one of the biggest and most viable populations of otters in Central Europe (Ansorge et al. 

1997), with densities of up to 4–7 otters per 10 km² (Lampa et al., chapter four). The study area 

(51°20′N, 14°19′E) consisted of seven pond areas, each comprising 8–13 ponds of varying size (0.36–

39.6 ha), and one single pond (7.6 ha) (Fig. 5.1). The overall water surface amounted to 505 ha. All 
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ponds (n = 63) are connected by a complex system of ditches and streams and framed by naturally 

vegetated embankments that are partly used as agricultural roads. Islands, extensive reed belts, and 

heavily vegetated peninsulas can serve as resting sites for otters and induce heterogeneous structures. 

Because of fish harvesting in autumn and subsequent wintry drainage of larger summer ponds that are 

only refilled and re-stocked with fish in spring again, otters are concentrated in wintertime on the 

fewer but deeper winter ponds that contain fish. Due to this seasonally and yearly differing water 

regime, the water area covered in the survey varied in each sampling year: 2006 (261 ha), 2007 (399 

ha), 2008 (449 ha), 2010 (294 ha), 2011 (366 ha), and 2012 (360 ha). 

 

5.3.3 Sampling and Microsatellite Genotyping 

Because a detailed description of the sampling and microsatellite genotyping is given in Lampa et al. 

(chapter four), we only summarise the main points here: 

Faecal collection was conducted on five consecutive days in each of our six sampling years from 2006 

to 2012 with one year missing (2009). The sampling occurred either in late winter (March; 2006, 

2010, 2011, 2012) or in spring (April 2007, May 2008), both seasons considered to be off-peak 

seasons for the reproduction in Eastern Germany (Hauer et al. 2002b). Annual faecal collections 

started with an initial day to get to know the marking sites that were previously mapped and to mark 

old faeces to facilitate recognition of fresh spraints the next day. On the following five consecutive 

days all faecal and anal jelly samples were collected from tagged marking sites and from new sites, 

which were established during that week. Overall, we collected 2132 fresh (from previous night) 

faecal samples. The external layer of each sample was wiped off with a cotton swab and stored in 

buffer ASL (Qiagen, Hilden, Germany) at –80°C (see Lampa et al., chapter four for details). Out of 

these, 2001 samples were extracted using the QIAamp® DNA Stool Mini Kit (Qiagen). Remaining 

samples had to be culled because they either contained too little spraint, were contaminated during 

sampling or extraction, or could not be extracted due to capacity reason, as was the case in 2006. 

Extracted samples were genotyped with seven microsatellites (Lut435, Lut457, Lut604, Lut615, 

Lut701, Lut733, Lut914; Dallas & Piertney 1998; Dallas et al. 2000, 2002) and sexed with markers 

Lut-SRY (Dallas et al. 2000) and DBY7Ggu (Hedmark et al. 2004). After excluding samples that 

derived from minks or other species (n = 179) and after removing samples that did not produce any 

PCR product at all (n = 549), we counted 1273 assured otter samples (with at least one expected otter 

allele) with the following distribution over the years: 199 (2006), 211 (2007), 136 (2008), 204 (2010), 

239 (2011), and 284 (2012). Because otter faecal samples from our study area have high genotyping 

error rates and low genotyping success rates (Lampa et al. 2008, 2013, chapter four), we generated a 

consensus genotype applying a screening approach that consists of five amplification steps after that 

low-quality samples were removed according to certain thresholds (Lampa et al. 2013). Complete 

multilocus genotypes were obtained for 778 samples. We re-amplified genotypes that mismatched at 

only one or two alleles and checked for still extant genotyping errors with Programme Dropout 
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(McKelvey and Schwartz, 2005). Actual genotyping error rates were calculated for each year 

following (Broquet & Petit 2004) and amounted to, on average, 48.9% with an allelic dropout rate of 

45.1% (range: 39.3% (2012) – 48% (2006)) and a false allele rate of 3.8% (range: 2.9% (2006) – 4.6% 

(2012)). Genotyped samples could be pooled to 79 distinct genotypes out of which five dyads showed 

different sexes resulting in 84 different individuals (43 ♂, 41 ♀). Out of these, 46 individuals (27 ♂, 

19 ♀) were only found in one year and 38 (16 ♂, 22 ♀) in up to four of the six years (see Lampa et al., 

chapter four). 

 

5.3.4 Apparent Survival and Temporary Emigration 

For estimation of apparent survival (Φ) and temporary emigration (γ´´ – probability of temporarily 

emigrating from the study area between two sampling occasions; γ´ – probability of remaining outside 

the study area), we used robust design models (Pollock 1982; Kendall et al. 1995, 1997) implemented 

in Programme MARK (White & Burnham 1999). The robust design consists of closed population 

models for the “secondary sampling sessions” – here, the five sampling occasions of each year – and 

of open population models for the “primary sampling sessions” – here, the six sampling years. Closed 

population models assume no birth, death, emigration, or immigration between sampling occasions. 

For these secondary sampling sessions, we employed the misidentification model of Lukacs and 

Burnham (2005a) that incorporate genotyping errors, because it is very likely that genotyping errors 

are still present in the dataset (Lampa et al. 2013, chapter four). These models estimate the population 

size (N෡), the conditional capture (p) and recapture (c) probability, the probability of a correct genotype 

classification (α), and the number of genotypes never captured (f0) for each sampling year separately. 

The secondary sampling sessions are nested in the primary sampling sessions for which apparent 

survival (Φ) and temporary emigration (γ´, γ´´) can be estimated. 

For the robust design, we used a full-likelihood approach as implemented in MARK. To reduce the 

number of parameters to be estimated, each secondary model was constrained with the respective most 

parsimonious model ascertained in Lampa et al. (chapter four), namely model M0 (2006, 2010, 2011), 

Mh (2007, 2008), and model Mtb_constraint (2012). For those years were two models fitted equally well 

the data (e.g. in 2006 M0 ≈ Mb), we tested both models and chose the one with lower AICc. Since 

parameter f0 was in each year < 1, we constrained it to be equal for all years to further reduce the 

number of parameters. We fitted a variety of robust design models to the data incorporating time-

dependent (t), water surface area-dependent (ha), sex-dependent (sex), or constant (.) parameterisation 

for apparent survival and temporary emigration, including interactions (time × sex) (ha × sex). Using 

the most general model (Φ (time × sex), γ (time × sex)) and the most reduced one (Φ (.), γ (.)), we 

initially evaluated the movement patterns of temporary emigration. Temporary emigration were 

constrained to account for no movement (γ´´ = γ´ = 0), completely random movement (γ´ = γ´´), first-

order Markovian movement (γ´k = γ´k-1 and γ´´k = γ´´k-1) – where the availability depends on the state 

in which an individual was the year before – or even flow movement (γ´´ = 1 – γ´) – where the 
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probability of moving from observable to unobservable is the same as moving from unobservable to 

observable. For parameter identifiability, robust design models require equal survival probabilities for 

observable and unobservable animals (Kendall et al. 1997). Since our study area is located in a 

landscape with same characteristics, it is a reasonable assumption that otter survival rates inside and 

outside the study area are equal. 

Models were adjusted for correct parameter counts where confounding or estimates at the boundary 

required it. Following Lukacs and Burnham (2005a), all parameters were modelled using sine link 

function. We ranked models using corrected Akaike’s Information Criterion (AICc) that accounts for 

small sample sizes (Sugiura 1978; Hurvich & Tsai 1989). For those models that together comprised 

99% of the support in the data, we calculated weighted averages for all parameters using normalised 

AICc weights – the likelihood of a model (Burnham & Anderson 2002). To evaluate which of the 

variables are most important for apparent survival and temporary emigration, we summed up AICc 

weights for the respective variable considering all models in the candidate model set (Burnham & 

Anderson 2002). 

While the estimation of temporary emigration accounts for movements between the study area and the 

surrounding area from one year to another, we also wanted to study movement differences between 

sexes within our study area. For this purpose, we first counted for each individual how many 

consecutive years it was found in the same pond area and compared males and females using a one-

sided asymptotic two-sample permutation test employing the R package exactRankTests (Hothorn & 

Hornik 2013). The question behind is whether one sex is more philopatric than the other. We secondly 

assessed whether movements to other pond areas within a sampling year or between sampling years 

are more often conducted by one sex employing Fisher's exact tests. In these analyses, we could not 

correct for genotyping errors, as was done in the robust design models. Genotyping errors can lead to 

so far unknown but not existing genotypes that are classified as new individuals. These so called 

“ghost individuals” are mainly presented by genotypes that are only found in one single sample and 

never again. Since there was no significant difference in the number of single samples between both 

sexes (Lampa et al., chapter four), it is unlikely that ghost individuals influenced the between sex tests. 

Statistical analyses here and in the following (unless otherwise specified) were done in the R 

environment (R Development Core Team; http://www.r-project.org/). 

 

5.3.5 Dispersal 

When using nuclear marker, such as microsatellites, sex-biased dispersal can be tested either by 

comparing genetic differentiation between sexes through e.g. FST (genetic distance values), by 

applying assignment tests, or by comparing male-male with female-female relatedness (Freeland 

2005). While the latter can be applied within populations, the former two analyses are performed 

among populations. Since we studied one population that cannot be separated reliably in 

subpopulations, we are only left with the comparison of relatedness (R) between sexes. 
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Here, Wang (2011) cautioned against the use of conventional R-values when genotyping errors and/or 

inbreeding are present. Genotyping errors are certainly present in our data and inbreeding is possible 

because low genetic diversity and small Ne are usually associated with high inbreeding (Freeland 

2005). We found low genetic diversity (Lampa et al., chapter four), as found in other European otter 

populations (Dallas et al. 2002; Mucci et al. 2010), and Koelewijn et al. (2010) showed that effective 

population size can be very small (Ne = 0.30 Ntotal). Hence, we calculated relatedness for each sex 

accounting for a) genotyping errors and b) genotyping errors and inbreeding, by employing the triadic 

likelihood estimator (TrioML) in Programme COANCESTRY (Wang 2007, 2011). Significant 

differences between the sexes were ascertained using Mann-Whitney-U-tests in R. To decide whether 

inbreeding is present or not, COANCESTRY estimates individual inbreeding coefficients. The 

TrioML-estimator requires a frequency of an incorrect genotype for each locus. Here, we used locus-

specific average genotyping error rates that we calculated following Broquet and Petit (2004) (see 

Lampa et al., chapter four). 

 

5.3.6 Spatial Use 

Since we sampled each individual for five subsequent days each year, the area spanned by individually 

used marking sites represents a minimum area of their activity within the sampling period and can be 

used as an index for their activity range. Individual activity ranges may change over years, because 

individuals might shift and rearrange their territories due to environmental factors, such as water 

regime changes, which happen usually twice a year, or individual characteristics (e.g. sex, age). To 

identify the main biological factors shaping activity ranges, we intended to test the effect of sex, water 

surface area, the number of years an individual was known (as a proxy for age), and season on activity 

range indices. As an index for activity ranges we calculated minimum convex polygons (MCP) that 

allowed us to include each individual with at least three different sampling points per year. The use of 

MCPs is criticised, among others, for their sensitivity to the number of locations (Laver & Kelly 

2008). To account for this, we included number of locations per MCP as a covariate in the analysis. 

However, we emphasise that calculated MCPs are not reflecting actual home range sizes but rather an 

index of activity ranges or area visited for which MCPs can be accepted (Laver & Kelly 2008). 

We used ESRI ArcGIS Desktop version 10.1 to calculate MCPs. Since individuals with at least three 

samples are less likely “ghost individuals”, we deemed this analysis to be not severely biased by 

genotyping errors. We considered all activity ranges over years (41 ♂, 50 ♀) and accounted for 

individuals that were recorded in up to three years by including the individual as a random effect in a 

linear mixed-effect model (LME) implemented in the R package nlme (Pinheiro et al. 2014). During 

initial data exploration, the number of locations per MCP turned out to be correlated with the number 

of years an individual was known (the proxy for age) (Pearson's product-moment correlation = 0.22, t 

= 2.09, df = 89, p = 0.039). Since the former is a reliable measurement instead of a proxy, we only 

included number of locations in the model. Season could also not be included as an explanatory 
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variable as it was highly correlated with water surface area (Kendall’s tau = –0.70, Z = –7.5369, p = 

4.8 × 10-14). However, activity range indices were similar in both seasons (median-spring = 7.91 ha, 

median-winter = 8.17 ha). A visual examination of scatterplots with activity range indices against either 

number of locations per MCP or water surface area for each sex indicated the potential presence of an 

interaction between the covariates sex and number of locations per MCP. Hence, the most general 

model included activity range indices (ha) as a response variable with water surface area (ha), sex, 

number of locations per MCP, and the interaction between the latter two as covariates (fixed effect), 

and the individual as a random effect. Since males had a larger variance in activity range indices than 

females, we fitted a heteroscedastic model using the varIdent-function for the covariate sex as part of 

the R package nlme (Pinheiro et al. 2014). We fitted all possible reduced parameter models using a 

maximum-likelihood estimator (ML), ranked them for their fit by using Akaike’s Information 

Criterion with sample size correction (AICc) employing the R package AICmodavg (Mazerolle 2013), 

and selected the best fitting model. The final model was re-fitted with a restricted maximum-

likelihood (REML) estimator and validated based on graphical inspections of the residuals (Zuur et al. 

2009). Significances of fixed effects were assessed by computing an analysis of variance table. 

Since otters in fish pond systems might have another spatial organisation than e.g. otters inhabiting 

linear home ranges along rivers, we were interested in whether activity ranges overlapped and whether 

overlapping individuals have a higher degree of relatedness. For this purpose, we chose all individuals 

that were at least subadults to avoid biased results by cups accompanying their mother. This was done 

by including individuals that either were known for ≥ 2 years, had known age at time of sampling 

because they were found dead in subsequent years and could be aged, or that were sampled for the first 

time but had a relatedness < 0.4 to females in their pond area and close-by ponds. Since the relatedness 

for parent-offspring is 0.5 (Freeland 2005), those otters were probably not juveniles accompanying 

their mother. We then tested for all same-sex and opposite-sex dyads collected in the same pond area 

whether the degree of relatedness correlates with the extent of overlap using Kendall’s rank 

correlation. The degree of relatedness was calculated using the TrioML-estimator (Wang 2007). As an 

extent of overlap, we computed the overlap area relative to each individual activity range and averaged 

between the two percentage values. We further compared these averaged relative extent of overlaps 

between male-male, female-female, and male-female dyads whether any group has larger or more 

frequent overlaps using Mann-Whitney-U-tests and Bonferroni correction for multiple tests. 

To receive information on the marking site use, we investigated by how many individuals a marking 

site was used, at what time, and to which degree those individuals were related with each other. 

 
5.4 Results 

5.4.1 Apparent Survival and Temporary Emigration 

The best-supported assumption for the movement pattern of temporal migration was even flow 

movement with ΔAICc > 2 compared to all other movement patterns (Tab. 5.1). As a result, we only 

considered even flow movement models for inference on apparent survival and temporary emigration. 
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Table 5.1 Robust design models run in Programme MARK to find the most parsimonious movement pattern for 
temporary emigration/re‐immigration (γ´´, γ´) of otters in Upper Lusatia (Saxony, Germany) sampled between 
2006–2012. We used the most general (Φ (time × sex) γ (time × sex)) and the most reduced model (Φ (.) γ (.)) 
to  compare  even  flow movement  (γ´´  =  1  –  γ´), Markovian movement  (γ´k  =  γ´k‐1  and  γ´´k  =  γ´´k‐1),  random 
movement (γ´ = γ´´), and no movement (γ´´ = γ´ = 0). Models are ranked according to their AICc values. Further 
parameters provided are the differences between AICc of the candidate model to the best fitting model (ΔAICc), 
AICc model weights (wi), the model  likelihood (derived by dividing the AICc weight of the respective model by 
the AICc weight of the best model), and the number of modelled parameters (K). 
Model  AICc ΔAICc wi Likelihood  K

Φ (.) γ (.) even flow movement 696.865 0 0.72 1  23

Φ (.) γ (.) Markovian movement  699.017 2.153 0.245 0.341  24

Φ (.) γ (.) random movement 702.914 6.049 0.035 0.049  23

Φ (time × sex) γ (time × sex) even flow movement 716.852 19.987 0.00003  0.000  41

Φ (time × sex) γ (time × sex) Markovian movement 731.336 34.471 0.00000  0.000  45

Φ (time × sex) γ (time × sex) random movement 733.306 36.441 0.00000  0.000  41

Φ (.) γ (.) no movement  747.761 50.896 0.00000  0.000  22

Φ (time × sex) γ (time × sex) no movement  762.128 65.263 0.00000  0.000  31

 

Table  5.2  Candidate model  set  of  robust  design models  run  in  Programme MARK  to  estimate  apparent 
survival  (Φ) and  temporary emigration  (γ) of otters  in Upper  Lusatia  (Saxony, Germany)  sampled between 
2006–2012. Movement pattern used  to model  temporary emigration  is even  flow movement  (γ´´ = 1 –  γ´). 
Parameters were modelled either to be constant (.) or to vary with water surface area (ha), with sex (sex), or 
both  (ha  ×  sex). Models  are  ranked  according  to  their  AICc  values.  Further  parameters  provided  are  the 
differences between AICc of the candidate model relative to the best fitting model (ΔAICc), AICc model weights 
(wi), the model  likelihood (derived by dividing the AICc weight of the respective model by the AICc weight of 
the best model), and the number of modelled parameters (K). 
Model  AICc  ΔAICc wi Likelihood  K 

Φ (ha × sex) γ (.)  695.236  0.000  0.129  1.000  24 

Φ (sex) γ (.)  695.526  0.290  0.112  0.865  24 

Φ (ha × sex) γ (ha)  696.022  0.785  0.087  0.675  24 

Φ (sex) γ (ha)  696.047  0.811  0.086  0.667  24 

Φ (ha × sex) γ (sex)  696.581  1.345  0.066  0.510  25 

Φ (ha) γ (.)  696.607  1.371  0.065  0.504  23 

Φ (.) γ (.)  696.865  1.629  0.057  0.443  23 

Φ (sex) γ (sex)  696.875  1.639  0.057  0.441  25 

Φ (ha) γ (sex)  697.211  1.975  0.048  0.373  24 

Φ (sex) γ (ha × sex)  697.217  1.980  0.048  0.372  25 

Φ (ha × sex) γ (ha × sex)  697.221  1.984  0.048  0.371  25 

Φ (.) γ (ha)  697.398  2.162  0.044  0.339  23 

Φ (ha) γ (ha)  697.404  2.168  0.044  0.338  23 

Φ (.) γ (sex)  697.512  2.276  0.041  0.321  24 

Φ (ha) γ (ha × sex)  697.823  2.586  0.035  0.275  24 

Φ (.) γ (ha × sex)  697.879  2.642  0.034  0.267  24 

 

When considering all 36 fitted models, the variable time was the least important predictor for both 

parameters with summed AICc weights of 0.0097 for apparent survival and 0.14 for temporary 
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emigration. Thus, we dropped this variable from the candidate model set to reduce the number of 

models (Tab. 5.2). In this candidate model set, the most important variable for apparent survival 

according to summed AICc weights was sex followed by water surface area (Tab. 5.3). The model 

weighted average apparent survival rates slightly varied over years with higher rates for larger water 

surface areas (range: Φmales = 0.68–0.73; Φfemales = 0.79–0.84) and with on average 11% higher rates for 

females than for males (mean: Φmales = 0.71 ± 0.08; Φfemales = 0.82 ± 0.07; Tab. 5.4). 

 

Table  5.3  Sum  of  AICc weights  (wi‐sum)  for  those models  out  of  the  16  fitted 
robust design models of the candidate model set (Tab. 5.2) that contained the 
respective variable for either apparent survival (Φ) or temporary emigration (γ). 
Variable  wi‐sum (Φ) wi‐sum (γ)

Sex  0.632  0.426 

Water surface area  0.521  0.377 

Constant  0.177  0.362 

 

Table  5.4  Model  weighted  average  apparent  survival  rates  (Φ)  and  temporary  emigration  rates  (γ´´  –
probability to leave the study area; γ´ – probability to stay outside the study area) each for males and females 
of a wild otter population  in Upper Lusatia  (Saxony, Germany). Candidate models used  for averaging can be 
found in Tab. 5.2. For each parameter the average estimate, standard error (SE), and 95% confidence interval 
(CI) is provided, as well as a mean over all years.  
Period  Average  

Φmales ± SE 
(CI) 

Average  
Φfemales ± SE 
(CI) 

Average  
γ´´males ± SE 
(CI) 

Average  
γ´´females ± SE 
(CI) 

Average  
γ´males ± SE 
(CI) 

Average  
γ´females ± SE 
(CI) 

2006–2007   0.71 ± 0.09  

(0.52–0.85) 

0.83 ± 0.07 

(0.63–0.93) 

0.31 ± 0.08 

(0.17–0.49) 

0.26 ± 0.07

(0.14–0.42) 

 

2007–2008   0.73 ± 0.09  

(0.51–0.87) 

0.84 ± 0.08 

(0.62–0.95) 

0.30 ± 0.09

(0.16–0.49) 

0.25 ± 0.08

(0.13–0.42) 

0.70 ± 0.09 

(0.51–0.84) 

0.75 ± 0.08

(0.58–0.87) 

2008–2010   0.68 ± 0.08 

(0.52–0.81) 

0.79 ± 0.07 

(0.62–0.89) 

0.33 ± 0.08

(0.20–0.49) 

0.28 ± 0.07

(0.17–0.44) 

0.67 ± 0.08 

(0.51–0.80) 

0.72 ± 0.07

(0.56–0.83) 

2010–2011   0.70 ± 0.08  

(0.52–0.84) 

0.81 ± 0.07 

(0.63–0.92) 

0.32 ± 0.08

(0.18–0.49) 

0.27 ± 0.07

(0.15–0.42) 

0.68 ± 0.08 

(0.51–0.82) 

0.73 ± 0.07

(0.58–0.85) 

2011–2012   0.70 ± 0.08  

(0.52–0.84) 

0.81 ± 0.07 

(0.63–0.92) 

0.32 ± 0.08

(0.19–0.49) 

0.27 ± 0.07

(0.16–0.42) 

0.68 ± 0.08 

(0.51–0.81) 

0.73 ± 0.07

(0.58–0.84) 

Mean   0.706  0.817  0.314 0.265 0.685  0.735 

 

For temporary emigration, the cumulative support for water surface area, sex, and constant 

parametrisation (independent of any covariate) received similar support (Tab. 5.3). However, the 

model weighted average of temporary emigration and re-immigration only slightly varied over the 

years with a maximum difference of 0.03 (Tab. 5.4). The sex difference amounted to 0.05 with a 

higher probability to leave the study area for males, but a lower probability to stay outside the study 

area (Tab. 5.4). 

The tests for movement patterns within the study area revealed that the number of consecutive years 

an individual was found in the same pond area significantly differed between males and females (one-

sided asymptotic permutation test: T = 72, p = 0.016). Males were more often found in only one 
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sampling year (31 ♂, 22 ♀), females in several consecutive years (two years: 9 ♂, 10 ♀; three years: 3 

♂, 6 ♀; four years: 0 ♂, 3 ♀). Consequently, males are the ones that significantly change more often 

pond areas within a sampling year (7 ♂, 0 ♀; one-sided Fisher’s exact test: p = 0.0071) and between 

sampling years (10 ♂, 2 ♀; one-sided Fisher’s exact test: p = 0.016). 

 

5.4.2 Dispersal 

Regarding sex-biased dispersal, we calculated the relatedness (R) among females and among males 

employing the TrioML-estimator in Programme COANCESTRY that accounts for genotyping errors 

and inbreeding. Here, we received highly significant differences between the sexes regardless of 

whether only genotyping errors (GE) were incorporated (U-test: W = 412867, p = 7.63 × 10-6) or 

genotyping errors and inbreeding (GEI) (U-test: W = 446333, p = 2.25 × 10-14). Females were always 

closer related to each other (meanGE = 0.20, meanGEI = 0.30) than males to each other (meanGE = 0.15, 

meanGEI = 0.17) or the total population (meanGE = 0.17, meanGEI = 0.24). The mean inbreeding 

coefficient over all individuals amounted to 0.11 and was much larger than the median with 0.004. 

 

5.4.3 Spatial Use 

Activity range indices ranged from 0.0061 ha – a female found on three closed by marking sites on a 

ditch – to 169.1 ha – a male found in three different pond areas, about 4 km apart from each other – 

with a median of 7.26 ha (mean = 10.9 ha) for females and 9.39 ha (mean = 26.1 ha) for males. 

A full model that allowed different variances for each sex was better supported than a full model 

without this adjustment (ΔAICc = 37.9). Hence, all reduced models containing the covariate sex were 

fitted as heteroscedastic model. The best fitting LME model included sex, number of locations per 

MCP, and the interaction between both covariates and had 22% more support in the data than the next 

best fitting model – the full model (Tab. 5.5). Although these two models only had a difference of 

ΔAICc = 1.01, the covariate water surface area in the full model had no significant effect (p = 0.76) on 

activity range indices. The best fitting model produced residuals meeting homogeneity and normality 

assumptions and no influential observations were found following Zuur et al. (2009). When residuals 

were plotted against covariates, no clear patterns emerged. According to the best model, sex (p = 

0.009), number of locations per MCP (p = 0.0002), and the interaction sex × number of location (p = 

0.025) had a significant effect on activity range indices. Males had larger areas than females and with 

increasing number of locations male area indices increased stronger than those of females (Fig. 5.2). 
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Table 5.5 Linear mixed‐effect models (LME) with individual as random effect to test for the influence of sex, 
number of  location per MCP (points), or water surface area (area) on the size of otter activity range  indices 
sampled  in Upper  Lusatia  (Saxony, Germany) between 2006–2012. Models  including  sex as  covariate were 
fitted as heteroscedastic models using  the varIdent  function of  the R package nlme  (Pinheiro et al., 2014). 
Models are ranked according to their AICc values. Further parameters provided are the differences between 
the  AICc  of  the  candidate model  relative  to  the  best  fitting model  (ΔAICc),  AICc model  weights  (wi),  the 
cumulative AICc model weights (Cum wi), and the number of modelled parameters (K). 
Model  AICc ΔAICc wi Cum wi  K 

activity range ~ sex + points + sex:points  813.90  0  0.55  0.55  7 

activity range ~ sex + area + points + 

sex:points 

814.91  1.01  0.33  0.88  8 

activity range ~ sex + points  817.00  3.10  0.12  1  6 

activity range ~ sex  830.92  17.01  0  1  5 

activity range ~ sex + area  833.12 19.22 0 1  6 

activity range ~ points  861.26 47.36 0 1  4 

activity range ~ area + points 862.65 48.75 0 1  5 

activity range ~ 1  875.73 61.83 0 1  3 

activity range ~ area   877.84 63.94 0 1  4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Sex and number of marking sites affects the size of activity ranges. Changes of activity range 
indices for males (black line) and females (red dashed line) with increasing number of marking sites that were 
used to calculate activity range indices predicted by a heteroscedastic linear mixed-effect model (LME) with the 
individual as random effect. Black dots signify the input data for males, red dots for females. 
 
Regarding the overlap of sub-/adult activity ranges, we found 15 male-male dyads, 17 female-female 

dyads, and 34 male-female dyads that stayed in the same pond area in one sampling year. For the 

sampling year 2006, no dyad could be analysed, since we could not distinguish between juveniles and 

adults. The extent of overlaps between the three groups (male-male, female-female, male-female) 

showed no significant differences (U-tests: p > 0.6). Out of the 15 male-male dyads seven had no 
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overlap in their activity range and eight overlapped by up to 81.8% (mean = 34%; median = 26%). 

Non-overlapping males had a lower degree of relatedness (mean = 0.11; median = 0) than overlapping 

males (mean = 0.21; median = 0.09), but the relationship between percentage overlap and relatedness 

was only marginally significant (Kendall’s rank correlation: tau = 0.38, Z = 1.67, p = 0.095). For the 

17 female-female dyads only four were not overlapping, the remaining overlapped by up to 66.8% 

(mean = 24%; median = 19%). The more the activity ranges overlapped, the higher was the degree of 

relatedness (Kendall’s rank correlation: tau = 0.65, Z = 3.34, p = 0.00083). When examining opposite-

sex dyads that were found in the same pond area, 10 out of 34 dyads showed no overlap, whereas 24 

dyads overlapped by up to 72.3% (mean = 25%; median = 15%). An overlapping male-female dyad 

had lower degree of relatedness (mean = 0.09; median = 0) than non-overlapping dyads (mean = 0.18; 

median = 0.16). The negative correlation between overlap and relatedness was significant (Kendall’s 

rank correlation: tau = –0.33, Z = –2.43, p = 0.015). 

Over the six years we found 384 active otter marking sites, with a density of 0.29 per ha (range: 0.15 

(2008) – 0.38 (2010)). The same marking site was used by up to six different individuals within five 

consecutive sampling days (mean = 1.35), but only 2–3 individuals visited the same marking site in 

the same night. One small peninsula (80 m long) was even used by eight different individuals within 

the five sampling days (year 2007: 4 ♂, 4 ♀). We knew that five (3 ♂, 2 ♀) out of these eight 

individuals were at least subadults and presumable adults. Two of the three males were full siblings or 

parent-offspring (R = 0.5), both being unrelated to the third male, which was only represented by one 

single sample and could hence be a ghost individual. The two females that shared the peninsula were 

unrelated (R = 0). One of the two females was closely related to two of the three possible juveniles. 

 

5.5 Discussion 

5.5.1 Apparent Survival 

The most important variables that explained apparent survival were water surface area and sex. The 

water surface area during our sampling time reflects the number and size of ponds that were available 

for otters five months (when sampled in March) or 1–2 months (when sampled in April/May) before 

sampling. It is hence reasonable to assume that survival increases the more ponds are available for 

fishing. However, the differences between years were only small, probably because even a smaller 

number of ponds provided sufficient resources to otters. 

There was a clear difference in sex, with males having lower apparent survival than females. Since 

apparent survival is a product of true survival (S) and fidelity (F) – the probability of remaining in the 

population – a lower apparent male survival could either be produced by a lower true survival or by a 

higher permanent emigration of males or both. In almost all carcase sampling studies there was a male 

bias and hence the conclusion of a higher male mortality (Ansorge et al. 1997; Hauer et al. 2002a; 

Dallas et al. 2003; Kruuk 2006; Koelewijn et al. 2010). A higher male mortality is also reasonable if 

males have higher temporary emigration and re-immigration rates, larger home ranges, and are the 
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ones that disperse more often. All three seemed to be the case for our studied population (discussed 

below). Probably it is reasonable to argue that a higher dispersal rate and a higher true mortality 

resulted in a lower apparent survival rate of males. 

To our knowledge, there is only the study of Arrendal (2007) providing estimates of apparent survival 

for Eurasian otters. Investigating lakes and rivers in southern Sweden, she also found a sex difference 

(Φmales = 0.51; Φfemales = 0.79) with considerable lower apparent survival rates for males. However, the 

confidence interval (CI) of the male survival rate ranged between 0.15–0.98. Such a wide CI shows 

that the estimates are not very reliable. Using life tables constructed from carcases sampled in our 

study region, Ansorge et al. (1997) developed a population model to calculate mortality rates for each 

age. The mean mortality rate over all ages amounted to 0.36 and corresponds to a true survival rate of 

S = 0.64. Since our apparent survival rate (ΦMale-Female-Mean = 0.75) is a product of true survival and 

permanent emigration (F) and because we have to assume that dispersal (1 – F) will not be 0 (F < 1), 

our true survival rate will even be higher than 0.75. However, the data of Ansorge et al. (1997) derived 

from carcases sampled between the years 1980–1995. In this period, the otter population increased in 

size (Klenke et al. 2013) and started to expand (Reuther 2004), but deriving mortality estimates from 

carcases-based life tables require a stationary age distribution (Caughley 1966). Hence, their estimates 

are less reliable and probably not comparable to our data collected between 2006 and 2012. 

Kruuk (2006) stated that otters, unlike most other mammals, have a gradual increase of mortality rate 

with age (after the first year) and that they have a remarkably short life expectancy of 3–4 years. He 

also reported a comparably high mean annual mortality rate of 31% for females. However, our 

estimates for apparent survival show only moderate annual mortality rates. A study on 11 relocated 

wild-caught otters (Sjöåsen 1996) also found a comparably high survival rate of 0.79 using a Kaplan-

Meier estimator with telemetry data. Two studies on river otters (Lontra canadensis), that are 

supposed to have similar mortality rates than the Eurasian otter (Kruuk 2006), also provided survival 

rates: Guertin et al. (2012) estimated an apparent survival of Φ = 0.889 and Bowyer et al. (2003) found 

true survival rates of S > 0.8, both studying populations living in coastal water. These survival rates 

are similar to our results and indicate that our survival rate could be a reasonable estimation or is 

slightly underestimated. 

 

5.5.2 Temporary Emigration 

The knowledge about temporary emigration of otters and differences between sexes is rather 

restricted. Ansorge et al. (1997) stated that “nothing is known about the migration of otters in the 

Upper Lusatia region”. For coastal habitat Kruuk (2006) asserted that “males were much more erratic 

than females”. Also on lakes Erlinge (1967) claimed that males “are more on the move and travel 

larger areas”. But there are no concrete numbers available yet. Our study is the first estimating 

temporary migration parameters for an otter population. A movement pattern with balanced temporary 

emigration rates (males = 31.4%, females = 26.5%) and re-immigration rates (males = 31.5%; females 
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= 26.7%) was most supported. Our study area is located within a larger landscape with similar 

characteristics and should not differ in suitability or attractiveness, which is a parsimonious 

explanation for similar emigration and re-immigration probabilities. Males had a 5% higher 

probability to leave or enter the study area. This sex difference had a cumulative evidence of 42.6%, 

which underpins the assumption of a male-biased temporary migration. 

When looking at movements within our study area, we also found that males changed pond areas 

significantly more often than females within a year and between years. Consequently, females were 

found to have a significantly stronger affinity to their pond areas with 46.3% staying in a pond area for 

2–4 years, whereas 72.1% of the males were not re-sampled in their pond area in the subsequent year. 

The higher mobility of males within a year may be explained by significantly larger male home 

ranges. In line with this interpretation, our activity range index was larger for males than for females. 

 

5.5.3 Dispersal 

To infer on different levels of dispersal between sexes, we calculated relatedness (R) employing the 

TrioML-estimator (Wang, 2007, 2011) that incorporates genotyping errors and inbreeding. In all 

analyses, R-values among females were significantly higher than among males. Although a mean 

inbreeding coefficient of 0.11 is not very low, the median of 0.004 indicates that only a few 

individuals contributed to the comparably high mean (five ind. > 0.50 out of which three ind. > 0.90). 

Those five individuals likely were ghost individuals showing a heterozygous deficit due to high allelic 

dropout rates. Though our studied population is fairly small, which could have also resulted in high 

inbreeding rates. In any case, our results suggest that dispersal may be male-biased. Indeed, new and 

re-emerging alleles were only seen in male genotypes when they were recorded for the first time. 

Our results are consistent with the few other studies published on dispersal. Kruuk (2006) observed 

family groups where the female juveniles took over the home range of their mother or settled close by 

in subsequent years for breeding. The same was inferred from spraint distributions in a reintroduced 

otter population (Koelewijn et al. 2010). Also, Janssens et al. (2008) detected five males and no 

females in a recolonisation area and concluded that this suggests male-biased dispersal. Quaglietta et 

al. (2013) found via radiotracking of subadults (5 ♂, 2 ♀), that no female dispersed but three males 

settled in other areas than the natal one. They also reported a significant negative correlation between 

relatedness and geographical distance for females but not for males and deduced that this could be 

explained by male-biased dispersal. 

 

5.5.4 Spatial Use 

Otters deposit their spraints throughout their home ranges (Kruuk, 1992). Hence, their markings can 

be used to get information about their home ranges. Since most studies on otters are conducted on 

rivers or coastal habitats, home range sizes are usually specified as linear stretches (e.g. Erlinge 1967; 

Kruuk & Moorhouse 1991; Hung et al. 2004; Quaglietta et al. 2014). Only a few provided data on the 
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area of activity (Kruuk 2006; Ó Néill et al. 2009) and there is no study for fish pond systems. On lakes 

and streams, males used 63 ha area of water, females 34 ha (Kruuk 2006), whereas on a river system 

males and females used on average 30.2 ha and 16.8 ha of water, respectively (Ó Néill et al. 2009). 

The activity range indices we calculated cannot be compared with home range sizes because of the 

short study period per year and because shifts in spatial use prevented combining data across years. 

Therefore, our mean activity range indices based on 3–11 samples per year are smaller than the 

numbers offered by Kruuk (2006) or Ó Néill et al. (2009). However, just like them, our activity ranges 

showed a significantly larger spatial range for males than for females. This difference was due to 

seven males that changed pond areas during our sampling period. Removing those males from the 

data, resulted in a final homoscedastic model with number of locations per MCP as the only 

significant covariate (p < 0.0001) and, thus, equal activity range indices for males (mean = 12.2 ha; 

median = 6.2 ha) and females (mean = 10.9 ha; median = 7.26 ha). Since the remaining males could 

not all be juveniles accompanying their mother, they either included other pond areas outside our 

study area in their activity ranges, or only some males had these larger activity ranges. Other studies 

reported that male home ranges expanded with age (Arrendal 2007) or at sexual maturity (Sjöåsen 

1997) and that only resident adult males had larger ranges than females (Kruuk & Moorhouse 1991). 

We could show that activity range indices increased with number of locations especially for males. 

However, this covariate positively correlated with our proxy age. Replacing number of locations per 

MCP with age resulted in the same final model with similar significances. Hence, activity range 

indices also increased with increasing age. Since residency, sexual maturity, and paternity are only 

attained at a certain age, these factors might explain the found pattern. 

Regarding the overlap of activity ranges, it is known that several female ranges usually overlap with 

one larger male range (Erlinge 1968; Kruuk 2006; Quaglietta et al. 2014). Quaglietta et al. (2014) even 

reported male-female dyads sharing resting sites and spending a considerable amount of time together. 

For same-sex dyads there are opposing statements. Erlinge (1968) detected territorial behaviour and 

aggression primarily between individuals of the same sex and Quaglietta et al. (2014) found home 

ranges of unrelated same-sex dyads were separated by buffer areas. On the other hand, Kruuk (2006) 

observed home range overlaps among females and assumed these females were closely related with 

each other. We compared the extent of overlapping activity ranges between male-male, female-female, 

and male-female dyads that were at least subadults and correlated the extent of overlap with their 

degree of relatedness. Activity ranges of sub-/adults in the same pond area overlapped with a chance 

of 76.5% between females, 53.3% between males and 70.6% between males-females. None of the 

three groups differed in the frequency that overlaps occurred or in the relative size of overlapping 

activity ranges. For same-sex dyads, we found a positive correlation between the degree of relatedness 

and the extent of overlapping activity ranges that was significant for females, as assumed by Kruuk 

(2006). For males in contrast, the positive correlation was just not significant at the 5 % level. This 

difference between the genders once more indicates that females tend to stay close by their natal area 
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also for breeding, while there is a male-biased dispersal. Opposite-sex dyads overlapped in the same 

extent than same-sex dyads, but showed a significant negative correlation between relatedness and 

extent of overlap. Such differences in relatedness among males and females are also known from other 

species, result from gender differences in movement and dispersal, and ultimately reduce the risk of 

inbreeding (Lange et al. 2013). 

Overall, it could be shown that same marking sites were used by up to six individuals within a 

sampling year and that activity ranges of sub-/adults in the same pond area overlapped frequently with 

high percentage of overlaps. This may indicate that otters in fish pond systems have a more condensed 

spatial organisation, with smaller home ranges and higher resource partitioning. Probably because the 

energy requirements can be covered by smaller home ranges due to higher fish densities in fish pond 

systems compared to systems dominated by rivers, lakes, or coastal water. If core areas overlap more 

frequently, encounters will also happen more often. This would foster the recent conclusion of 

Quaglietta et al. (2014) that the social behaviour of otters is more flexible than previously thought. 

 

5.5.5 Conclusion 

Our results demonstrated that non-invasive genetic mark-recapture can be used to study population 

trends, sex ratios, and marking behaviour (Lampa et al., chapter four), as well as population dynamic 

and spatial use of a small population, despite the presence of ghost individuals. With a relatively short 

sampling period each year, we received sufficiently precise estimates of apparent survival and 

temporary emigration and gained information on dispersal and spatial use in fish pond systems. 

We found that apparent survival is higher for females than for males, probably due to higher true 

survival and less dispersal in females. The higher mobility of males is also reflected in higher 

temporary emigration/re-immigration rates, higher dispersal rates, and larger activity range indices. 

This should lead to a higher positive correlation between the degree of relatedness and the extent of 

overlapping activity ranges in females than in males, as observed in our study. The negative 

correlation of relatedness and overlapping activity range indices in opposite-sex dyads suggests further 

behavioural mechanisms to reduce the risk of inbreeding. The high proportion of activity range 

overlaps may indicate that spatial and maybe also social structures are specially adapted to highly 

productive fish pond systems. 
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6.1 Overview of Research Outline and Main Results 

In the previous chapters, I have first investigated how the combination of microsatellite genotyping 

and capture-mark-recapture (CMR) methods can be optimised and customised for the use of Eurasian 

otter faecal samples. To this end, I initially conducted experiments to find a suitable extraction 

method, to optimise the PCR amplification for otter faeces, and to determine differences in 

amplification success rates for increasing storage times for three types of faecal samples (Chapter 

two). The main finding of this exploration was that a pre-amplification approach increased 

amplification success rates by 11% and reduced genotyping errors by 53%. I further presented a 

multiplex PCR protocol that is more time- and cost-efficient. 

These findings served as a basis for the next step of the work, where I extracted, amplified, and 

genotyped the samples from the first sampling year (2006). In doing so, I conducted a preservation 

experiment and compared four methods to minimise genotyping errors, five methods to detect and 

quantify genotyping errors, and five methods to subsequently estimate population sizes using the 

generated multilocus genotypes (Chapter three). These comprehensive analyses gave rise to a review 

discussing pros and cons along each step of non-invasive genetic CMR analyses. Main outcomes were 

that high genotyping error rates lead to a severely flawed dataset if no consensus genotypes are formed 

and yield an overestimated population size if remaining genotyping errors are not incorporated into the 

estimation method. 

The guidelines for non-invasive genetic CMR outlined in chapter three were then used for collecting, 

extracting, genotyping, and analysing samples of five additional sampling years (2007–2012), with 

one exception: the pre-amplification approach that consisted of two consecutive PCR steps was 

replaced by a single PCR using a more sensitive polymerase enzyme with high-fidelity and hot-start 

technique. This modified PCR protocol gained comparable success rates and speeded up the PCR 

amplification and was applied to all samples of 2007–2012. However, the pre-amplification approach 

was still used to deal with difficult markers or samples having particularly low DNA quality and 

quantity. The generated multilocus genotypes of all six years (2006–2012) could then be used for 

population analyses of the Eurasian otter. 

In chapter four, I examined seasonal and sex differences in the marking behaviour and assessed 

whether different faecal types are deposited in a specific manner. I further estimated population sizes 

of each sampling year employing misidentification closed population models and calculated yearly sex 

ratios. Main findings of this chapter were that jelly samples with higher genotyping success rates are 

more often defecated by males and placed exposed on frequently used marking sites, making them 

easier to find for collectors. Thus, when non-invasive genetic CMR is applied on otters it is crucial to 

avoid concentrating only on this kind of samples or only on prominent marking sites, in order to 

receive unbiased estimation of sex ratios. Furthermore, population size estimators should account for a 

behavioural effect that is either collector- or otter-induced. Finally, I demonstrated that otter faecal 

densities cannot be used as an index for abundances. 
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In chapter five, the same multilocus genotypes were then used to estimate apparent survival and 

temporary emigration/re-immigration, to test for sex-biased dispersal, and to identify sex differences 

in spatial use. Apparent survival was about 11% higher for females than for males. Males showed a 

higher mobility with 5% higher temporary emigration/re-immigration rates, a male-biased dispersal, 

and larger activity range indices. This resulted in a lower positive correlation of relatedness and 

proportion of activity range overlaps in males than in females, while opposite-sex dyads showed a 

negative correlation here. Activity ranges of sub/adults frequently overlapped and with high 

proportions, which could hint to a condensed spatial organisation in fish pond landscapes. 

 

6.2 Key Findings 

Key finding 1: How non-invasive genetic CMR can be successfully applied on otters 

Non-invasive genetic CMR methods opened up new possibilities to receive information about animal 

species that were previously difficult to attain. For the Eurasian otter, this method is only applicable 

since the development of 13 microsatellites (Dallas & Piertney 1998) and was first tested for the 

efficacy on faecal samples in 2003 in comparison with tissue samples (Dallas et al. 2003). Since then, 

nine studies applied non-invasive genetic sampling (Hung et al. 2004; Kalz et al. 2006; Prigioni et al. 

2006; Hajkova et al. 2007; Ferrando et al. 2008; Janssens et al. 2008; Lanszki et al. 2008, 2010; 

Quaglietta et al. 2013) and five applied non-invasive genetic CMR (Arrendal et al. 2007; Bjorklund & 

Arrendal 2008; Hajkova et al. 2009; Koelewijn et al. 2010; Bonesi et al. 2013) to receive information 

about Eurasian otters. However, researchers reported considerable genotyping error rates (Hung et al. 

2004; Janssens et al. 2008), unusually high population size estimates (Hung et al. 2004; Hajkova et al. 

2009), sex ratios that are probably biased (Bonesi et al. 2013), and uninformative estimates due to 

extremely wide confidence intervals (Arrendal 2007; Bjorklund & Arrendal 2008). 

One key problem when using otter faeces is the low template DNA quantity and quality leading to low 

success rates, genotyping errors, and contamination susceptibility. Low success rates diminish the 

power of the method; if not enough samples (per day, individual, or area) are successfully genotyped, 

either analyses are not feasible or results will be uninformative. Genotyping errors and amplified 

contaminant DNA either produce not existing false (ghost) individuals, or samples appear to 

mistakenly belong to another already known individual, while the real individual is missed. The 

former is more likely and lead to overestimated population sizes, underestimated recapture and 

survival rates (Creel et al. 2003), and potentially biased sex ratios if genders differ in the probability to 

produce false individuals. A bias in sex ratio can also be introduced if researchers focus the sampling 

on higher DNA quality jelly samples and on prominent marking sites (e.g. under bridges), because 

males defecate more often jelly samples that are more often placed on prominent marking sites. 

Sampled otters might also react with an increased sprainting rate on the disturbance through the 

sampling, introducing hereby a behavioural response effect. Hence, for the application of non-invasive 

genetic CMR on otters it is crucial to increase genotyping success rates, to decrease genotyping errors, 
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to get sufficient knowledge about their marking behaviour, and to compensate individual sprainting 

variations through an appropriate study design, laboratory procedure, and parameter estimation 

methods. Here, I offer an otter-specific step-by-step protocol for each required step that includes 

recommendations compiled from the results of chapters two, three, and four, as well as from the 

literature: 

 

Table  6.1  Simple  step‐by‐step  guide  for  non‐invasive  genetic  capture‐mark‐recapture  (CMR)  analyses  on 
Eurasian  otters  using  faecal  samples.  Recommendations  given  derived  from  own  results  and  from  the 
literature. 
Analysis step  Recommendations 

Sampling design  Choose a short sampling period to avoid violence of the closure assumption (e.g. five consecutive 

days) 

Avoid periods with high migration, mortality, or birth rates 

Do not concentrate primarily on jelly samples but collect all kinds of samples (spraints, spraint plus 

mucus, jelly samples) 

Include all kinds of marking sites, not only prominent ones (e.g. under bridges) 

Check each potential marking site on each sampling day 

Collect as many samples as possible 

  Train collectors 1–2 days before sampling  to decrease effects  (e.g. varying sampling  rate) of  the 

settling‐in period 

Sampling technique  Only take fresh samples 

Decrease  potential  behavioural  response  of  otters  by  taking  only  parts  of  faeces  (not  entire 

sample) with e.g. cotton sticks and avoid modifying the marking site  

Preservation  Do not use merely freezing over longer periods of time 

Use either storage buffers or the first lyse buffer of the employed extraction kit and store at –80°C 

Extraction  Use silica‐based extraction methods to increase success rates (e.g. commercial kits) 

Prevent cross‐contamination rigorously 

Microsatellite 

genotyping 

Use engineered polymerase enzymes (e.g. hot‐start technique) 

Choose only few (< 10), but highly variable and short (< 200–300 bp) markers 

Use low retention plastic tubes in all laboratory steps 

Prevent cross‐contamination rigorously 

Generate  consensus  genotypes  via  several  repetitions  (e.g.  three  for  homozygous,  two  for 

heterozygous genotypes) 

Discard (very)  low‐quality samples according to comparably relaxed thresholds (e.g. following the 

screening approach) 

Calculate or estimate allelic dropout and false allele rates 

Check  consensus  genotypes  for  one  or  two mismatches with  other  genotypes  and  verify  those 

genotypes via repetitions 

Check dataset for still existing errors (e.g. using Programme DROPOUT) 

Use pre‐amplification approach for difficult markers or samples 

Population size 

estimation 

Check on basis of biological  information and/or statistically whether the assumption of closure  is 

likely to be met 

Check  for equal capture probability and consider biological  information  to  select an appropriate 

model accounting for variations in catchability 

Take into account that some errors are still undetected 

Prefer the use of an error‐incorporating estimation model 

Consider accounting for a behavioural response 

Assess if/how assumptions of the model are violated 

Do not accept the population size estimation uncritically 
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Key finding 2: Faecal monitoring cannot serve as a simple alternative to non-invasive genetic CMR in 

order to receive reliable population size estimates. 

Most otter monitoring schemes are based on the search for indirect otter signs such as tracks in snow 

or mud, feeding traces, or faeces. Apart from monitoring that are deliberately conducted in winter 

during good snow conditions to find tracks, the most commonly sign of an otter are their faeces. The 

“standard survey method” makes use of these indirect signs that are comparably easy to find (Mason 

& Macdonald 1987). Here, 600–1000 m of riverbanks and waterways are surveyed for signs to 

differentiate between a positive or negative site that is interpreted as otter presence or absence in that 

given site. If repeated at several sites, this approach can give information about the distribution of 

otters, but it was also suggested to be used as a method to estimate relative abundances (Mason & 

Macdonald 1987). While applied in several studies, the use of the method for abundance estimates was 

criticised for its incapacity to account for temporal, spatial, and individual variations in sprainting 

behaviour (Kruuk et al. 1986; Ruiz-Olmo et al. 2001; Chanin 2003). Non-invasive genetic sampling 

breathed new life into the debate. A study conducting non-invasive genetic sampling on otters 

(Lanszki et al. 2008) presented a positive correlation between spraint densities and numbers of otter 

genotypes per area. 

Applying a linear regression between yearly numbers of genotyped samples per ha and yearly numbers 

of genotypes per ha, I also obtained an almost significant relationship, which could not be found when 

the number of genotypes per ha were replaced by the numbers of estimated individuals per ha. This 

discrepancy is caused by false individuals that are still contained in the dataset when using number of 

genotypes. The more samples are collected and genotyped, the more ghost individuals will be in the 

dataset increasing the number of genotypes. Thus, a correlation between number of genotypes and 

spraint densities will be biased by ghost individuals and should not be applied, even if the monitoring 

is always conducted at the same time of the year. Additionally, I could demonstrate that the presence 

of American mink (Neovison vison) can render otter faecal monitoring useless for obtaining abundance 

indices. When minks live in sympatry with otters, a significant proportion of apparent otter samples 

can be of mink origin, even when sampled by experts. When the faecal monitoring is conducted over 

several days, an otter-induced increased marking intensity or a collector-induced increased sampling 

rate could further bias results. Finally, I could show that in fish pond systems one marking site can be 

used by up to six different individuals. Thus, the number of samples at a marking site is not related to 

the number of individuals. 

As a result, I would not recommend using the “standard survey method” or a slightly modified faecal 

monitoring without genetic sample identification to receive population size estimates. 

 

Key finding 3: Current status of the protected otter population in Upper Lusatia 

In my dissertation, I was able to offer the first estimates with confidence intervals for population sizes 

and apparent survival rates of one of the presumably biggest otter populations in Europe over a 
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comparably long period of six years. Actual otter numbers are extremely important for fish pond 

systems, since these areas are strongholds for otters in Europe but are also hot spots for conflicts 

between humans, namely fishermen and fish farmers, and otters. The otter population in Upper Lusatia 

is likely to be a source for the spread into adjacent areas and for the connectivity of still fragmented 

populations in Saxony or neighbouring federal states. 

I found relatively high otter densities compared to other habitat types, such as lakes or rivers, although 

one has to bear in mind that different measurements (per ha area, per ha water area, per km shoreline), 

methods, and water body shapes hamper comparisons. Two studies on Hungarian (Lanszki et al. 2010) 

and Czech (Hajkova et al. 2009) fish pond systems that also used non-invasive genetic sampling found 

slightly higher otter densities. However, I received comparable results when using their estimating 

approaches. 

For Upper Lusatia, Ansorge (1994) reported expert guesses of the early 1990ies that are about half of 

my density estimates. The survival rate, based on life tables constructed from Upper Lusatian carcases 

(Ansorge et al. 1997), was also about 11% lower than the mean apparent survival rate estimated in this 

study. This either indicates an increase in the population size in Upper Lusatia with higher survival 

rates or suggests that otherwise previous studies have underestimated both. The carcases used by 

Ansorge et al. (1997) were sampled between the years 1980–1995. Otters in Upper Lusatia are 

believed to have continuously increased in densities since the 1950ies with a stepper increase from the 

mid 1980ies on (Klenke et al. 2013). In the 1990ies the otter also started to expand its distribution 

range in entire Germany (Reuther 2004). Furthermore, the Federal State of Saxony started to grant 

compensation payments to pond owners in 1995, which might have also raised the acceptance of otters 

by stakeholders (Myšiak et al. 2013). Thus, it might well be that the population indeed increased in 

size and in their survival rates. However, life table construction from carcases require rather strict 

assumptions, such as stationary age distributions (Caughley 1966) or that samples reflect the true 

structure of the living population, which often is not the case (Hauer et al. 2002a). For this reason, 

estimates derived from life tables are less reliable and difficult to compare with my data collected 

between 2006 and 2012. 

Despite constantly increased road mortality rates in Upper Lusatia within the past 10–15 years (Zinke 

1991, 2000; Hauer et al. 2000, 2002a), the survival rate was moderately high and there is no indication 

for a decrease in densities for the period 2006–2012. This suggests that the otter population in the 

Upper Lusatia is in a good condition. Here, international protection statuses and policy instruments of 

the state Saxony to support environmentally sound pond fisheries and habitat renaturation have 

certainly contributed to this, as was also shown by Klenke et al. (2013). 

 

Key finding 4: Spatial use of otters in fish pond systems 

Activity range sizes of females were roughly half of the size of a male range. This is in line with 

previous studies conducted on lakes and rivers (Erlinge 1967; Kruuk 2006; Ó Néill et al. 2009) or in 
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marine systems (Kruuk & Moorhouse 1991; Kruuk 2006). However, overlaps in activity ranges 

seemed to be different in fish pond systems compared to other water bodies. I detected an equally high 

proportion of overlaps in activity ranges between opposite-sex and same-sex dyads, regardless of 

whether male-male or female-female. While overlaps between sexes were also reported by others 

(Erlinge 1968; Kruuk 2006; Quaglietta et al. 2014), overlaps in same-sex dyads were only mentioned 

by Kruuk (2006). He differentiated between home ranges and “core areas”, though, and found only for 

the former overlaps between same-sex dyads. The here calculated activity range indices are rather 

comparable to “core areas” that did not overlap along a coastal habitat. Kruuk (2006) supposed a close 

relationship between overlapping female-female dyads, but unknown relationships between male-male 

dyads. For overlapping females, I could show that they were indeed closer related to each other with 

larger overlaps. Although a similar trend seemed to occur in males, it was not significant. Hence, also 

unrelated males overlapped by up to 55.5%, whereas unrelated females only overlapped in up to 3% of 

their activity range. It seems that adult females have smaller but definite activity ranges that are only 

shared with close relatives, whereas males have much larger but potentially less delimited (or less 

defended) activity ranges that overlap with female ranges but also with other, even unrelated, male 

ranges. Since fish pond systems offer high food abundances almost all year long but in a small and 

limited area, the spatial organisation of otters might be more condensed with smaller activity/home 

ranges and with higher non-food resource partitioning. If core areas overlap more frequently, 

encounters will also happen more often. This would foster the recent conclusion of Quaglietta et al. 

(2014) that the social behaviour of otters is more flexible than previously thought. It could well be that 

the social behaviour and hence marking behaviour changes depending on otter densities. Higher 

densities are known to cause increased home range overlaps e.g. in felids (Nielsen & Woolf 2001) or 

ursids (Dahle & Swenson 2003). 

 

6.3 Limitations and Methodological Constraints 

As stated in key finding 1, one main difficulty in non-invasive microsatellite genotyping are 

genotyping errors. Although there are several approaches that help minimising, detecting, and 

quantifying genotyping errors (Miller et al. 2002; Frantz et al. 2003; McKelvey & Schwartz 2005), the 

final consensus genotypes may still harbour errors (Marucco et al. 2011). Therefore, I decided to use 

the misidentification model from Lukacs and Burnham (2005a) (in the following named L&B 

estimator) that estimates the probability of a correct sample classification (α) and corrects the 

population size estimation with this probability. Several authors criticised the estimator and offered 

alternative estimators that incorporate genotyping uncertainty (Wright et al. 2009; Link et al. 2010; 

Yoshizaki et al. 2011). However, none of the alternative estimators is yet implemented in a 

script/software and none of them account for behavioural effects or is applicable to estimate survival 

and temporary emigration. 
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Whatever error-incorporating estimator is employed, on can criticise that it may either still 

overestimate when error rates exceed the capacity of the estimator, or underestimate if there are actual 

no errors. The latter is rather unlikely, because all four suggested error-incorporating estimators result 

in reliable estimations when genotyping error rate is close to 0 (Lukacs & Burnham 2005a; Wright et 

al. 2009; Link et al. 2010; Yoshizaki et al. 2011). One approach to handle the first criticism could be 

to count the number of individuals that must surely exist, because they were encountered several times 

(e.g. ≥ 3 samples) and to treat this as a conservative lower bound for population size. For the six 

sampling years this lower bound (range = 11–19; mean = 16) was usually within the lower 95% 

confidence interval of the L&B estimates (Tab. 6.2). For an upper bound one could use an estimation 

received by a conventional population size estimator not correcting for errors, such as closed 

population models in MARK (White & Burnham 1999) or the R-package CAPWIRE (Pennell et al. 

2013) (Tab. 6.2). Except for 2010, also these upper bounds were included in the respective 95% 

confidence interval of the L&B population size estimation (Tab. 6.2).  

Although the L&B estimation seemed to be the best compromise and the most reliable estimation 

method, the true population size and hence the true sex ratio remains unknown. 

 

Table 6.2 Results of population size estimations for each sampling year using different approaches. Genotypes: 
number of  individual genotypes; Counted minimum: number of  individuals with at  least  three samples; L&B 
estimation: weighted average population size using closed population models with misidentification (Lukacs & 
Burnham 2005a); MARK estimation: weighted average population size using closed population models without 
misidentification (Otis et al. 1978); CAPWIRE estimation: population size estimation using the most supported 
model of the R‐package CAPWIRE (Pennell et al. 2013) – the heterogeneity model (TIRM). 
Sampling 

year 

Genotypes  Counted 

minimum 

L&B estimation  

± SE (CI) 

MARK estimation  

± SE (CI) 

CAPWIRE estimation 

(CI) 

2006  22  16  19 ± 2.7 (13.4–24) 22 ± 1.5 (19.6–25.4) 23 (22–25) 

2007  30  17  26 ± 5.4 (15.1–36.3) 33 ± 4.5 (24.5–42.1) 31 (30–32) 

2008  22  11  21 ± 4.2 (13.2–29.8) 22 ± 1.1 (20.1–24.3) 23 (22–24) 

2010  21  15  15 ± 2.1 (11.2–19.6) 21 ± 0.0 (20.9–21) 21 (21–22) 

2011  26  19  25 ± 1.8 (21–28.1) 26 ± 0.0 (25.9–26) 26 (26–27) 

2012  24  17  20 ± 2.1 (16.3–24.5) 24 ± 0.9 (22.5–25.8) 24 (24–25) 

Mean  24  16  21  25 25 

 

In those conducted analyses where individual identification was important (sex differences in marking 

behaviour, dispersal, and spatial use), genotyping errors, mainly ghost individuals, could have biased 

results. Therefore, I tried to reduce the risk by including individuals with at least three samples 

(analyses on spatial use) and by assuring that the number of single samples – potential ghost 

individuals – is evenly distributed among sexes. Nevertheless, analyses can still be influenced by 

genotyping errors. 

Regarding activity range indices, I deliberately avoided to use the name home range (HR) because for 

reliable HR estimates it would have been required to a) sample for a longer period of time than only 

five days, b) include only one sample per night reducing the risk for serial autocorrelation, c) use a 
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method other than the very controversial minimum convex polygon approach (e.g. kernel density 

estimation (Worton 1989)) , or to d) correct HRs for pond sizes since the size and shape of a HR is 

dependent on the pond geometry. However, for the specific purpose of testing for sex differences in 

size and extent of overlap, I deemed my approach reliable. 

For further improvement of the analyses, it would have been interesting to include data on fish 

densities of each pond/pond area of each year. With these data I could have tested whether population 

size, temporary migration, marking behaviour, or spatial use are affected by changes in fish density 

and if so how. Theoretically, every fish pond owner knows the quantity of fishes that were inserted 

(usually in October to wintering ponds and in April to summering ponds) and the quantity that were 

harvested (usually in October from summering ponds and in April from wintering ponds). However, it 

is rather difficult to convince them to offer this information and would have taken too long for the 

purpose of this dissertation, if I would have succeeded at all. Secondly, in each year several ponds 

contained only wild fish that immigrated through the connected ditches and streams. For these, it 

would have been rather difficult to assign a respective fish density. Furthermore, not all ponds were 

regularly drained and harvested, meaning at the time of sampling I would have merely known what 

quantity of fish was inserted several months ago, but not the actual fish density. Hence, such analyses 

would have been possible only for those ponds that were just stocked with fish or close to harvest. 

 

6.4 Suggestions for Further Research 

This work provides the first series of abundance estimations over a comparably long period of six 

years for a population of high conservation interest. Since the Upper Lusatian population is the main 

source population for the expansion in Saxony and has high conflict potentials with humans, further 

monitoring is recommended. Future monitoring may not only focus on determining census population 

sizes, but may also estimate additional parameters, such as effective population sizes (Ne; Wright 

1931) or population growth rates (λ; Pradel 1996) to offer valuable long-term information on status 

and trend. Ne is an adequate indicator for the viability of a population (Kirk & Freeland 2011) because 

it decreases with increasing loss of genetic diversity through genetic drift or with increasing 

inbreeding (Wang 2005). Populations with low Ne, and hence decreased genetic variability and 

heterozygosity, are less able to adapt to environmental changes (Kirk & Freeland 2011). A reliable 

estimation of Ne would require more and higher polymorphic microsatellite loci than used in this study 

(e.g. ≥ 10), plus several other prerequisites, such as age-specific survival or number of adults in the 

population or samplings of several generations, dependent on the applied Ne-estimator (see Luikart et 

al. 2010 for a review). While Ne could help in evaluating any negative genetic effect on the population, 

population growth rate could help in determining the actual development of a population (increasing, 

decreasing, equilibrium). The parameter can be estimated using Programme MARK, also in 

combination with the robust design, but it is not yet possible to include the misidentification model 

here. Genotyping errors may also bias the estimation of Ne. Hence, if non-invasive genetic sampling is 
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used to obtain these parameters, researchers have to cope with genotyping errors and either find 

strategies how to deal with potential ghost individuals in the dataset (e.g. by using only those 

individuals with a certain number of samples) or develop estimators that can incorporate genotyping 

errors. Generally, such error-accounting estimators for population parameters are desirable for studies 

investigating elusive and threatened species through non-invasive genetic sampling and should receive 

special attention in the future. 

Future monitoring of the here studied population are also worthwhile because of the recently increased 

mink density. It would be expedient to estimate the mink’s population size, to monitor their population 

trend, and to investigate whether minks are affecting e.g. the marking behaviour or spatial use of 

otters. Such information is important to better understand the sympatric occurrence of native otters and 

invasive minks and to understand which niche separations are developed to avoid or reduce 

interspecific competition. 

Although I contributed to a better understanding of movement patterns and spatial use of otters in fish 

pond systems, it would be important and desirable to directly compare various otter habitats within the 

same landscape and within one continuous otter population. Such a direct comparison would be 

possible in the Upper Lusatia where some areas are characterised by lakes (mostly former opencast 

mines) and rivers instead of fish ponds. In this context, future research should also investigate whether 

otters adjust home range sizes and overlaps in dependence on population densities. 

Finally, since the otter is recolonising its former haunts in Germany, it is crucial for management 

purposes to know when it will arrive in which part of the country. Here, non-invasive genetic CMR 

analyses could be conducted either at the border of the expansion range or by sequentially shifting the 

monitoring area from the source population to the expansion border to analyse and understand the 

spatially and temporally complex recolonisation process. Using thereby derived information, the 

future expansion range and routes could be predicted by the use of individual-based spatially explicit 

models, such as the ones illustrated in Wiegand et al. (2004) or Bocedi et al. (2014). Individual-based 

models simulate life-history events of an individual; the sum of all individual life-histories represents 

population dynamics (Grimm & Railsback 2005). The combination with spatially explicit models 

means that the individual is associated with a location in geometrical space (Dunning et al. 1995). 

Hence, individual-based spatially explicit models enable to track individuals over space and time 

mimicking individual behaviour. The otter-specific population dynamic parameters I have estimated 

can be used to parameterise such an individual-based spatially explicit model to relate otter 

demographics explicitly to the landscape in which it lives and to predict the extent of future expansion 

and possible expansion routes. 

 

6.5 Suggestion for Otter Conservation 

Until now, the Federal State of Saxony is the only state in Germany using damage compensation 

schemes to reimburse fish farmers for their economic loss (Klenke et al. 2013). Since 1995, Saxony 
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gives financial support to pond owners for “pond maintenance”, for extra stocked fish that is 

considered as food for otters, for compensation in cases of hardship (if the actual otter damage exceeds 

€1000 per ha per year), and for measures that avoid otter damages on fish, such as otter fences 

(Schwerdtner & Gruber 2007; Klenke et al. 2013). These compensation payments appeared to have 

fulfilled their purposes in raising the acceptance of the conflict-laden species, because the studied 

population in Upper Lusatia seems to be in a good condition and might have even increased in size 

from the 1990ies on (see key finding 3). Such reimbursement payments could also be an important 

tool for those German federal states where the otter arrived within the last years, increasingly causing 

conflicts with the locals, such as in Bavaria (Sachteleben et al. 2010; Sage 2012). Here, fishermen and 

anglers are not used to otters and there is no contact person in case of damage and no management 

plan for the species yet, leading to illegal hunting and killing in some areas (Bayerl, pers. comm.; Sage 

2012). Here, a reimbursement scheme could promote the species’ acceptance and help establishing a 

sustainable population which may spread further in the federal state. 

Although the Saxon compensation schemes appear to serve the purpose, there is the interest that this 

public money is invested in a cost-effective way and there are some indications for overcompensations 

(cf. Klenke et al. 2013). Furthermore, the compensations in cases of hardship are only paid if fisheries 

prove the occurrence of otters by observations, tracks, or fish remains (Schwerdtner & Gruber 2007), 

but the latter two could nowadays also derive from minks. This would co-finance a further spread of 

the invasive species. For an optimisation of the payment scheme, spatially differentiated population 

sizes are an indispensable prerequisite, as was stated by Klenke et al. (2013). With the results of this 

study population size estimates are now available, at least for a part of Upper Lusatia. 

Regarding the current spread and increase of the mink populations, it is advisable to further monitor 

the process of co-existence between the two species, to investigate in population sizes of the mink, and 

to observe whether the mink has any impact on one of the most dense otter population in Germany. 

Especially the development of reliable methods to distinguish between the occurrence and damage 

caused by minks and otters are needed to effectively conserve otters in their core area. 

As mentioned already above, it seems that the population in Upper Lusatia serves as a source 

population for the recolonisation of adjacent areas. Even if Upper Lusatian otters probably do not 

require further conservation concern, it is different for individuals at the border of the expansion range. 

I demonstrated that male survival rates were lower than those of females, probably because of higher 

male mobility through male-biased temporary emigration and dispersal and larger territories. Since 

expanding otter populations have an increased road-kill risk (Chanin 2003), which is often biased 

towards males (Hauer et al. 2002a; Koelewijn et al. 2010), migrating individuals would benefit from 

direct protection measurements, such as otter-friendly bridges with ledges, otter tunnels under roads, 

otter-proof fences for guidance along roads, or signposts along roads that dissect water bodies. 

 

*                         *                         * 
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Summary 
 
After decades of population decline and range contraction, the Eurasian otter (Lutra lutra) is now 

expanding in Germany and other countries in Europe. For sound conservation strategies it is crucial to 

determine population demographic parameters, such as population size, sex ratios, survival, and 

migration rates. However, the estimation of such parameters for an elusive species is challenging and 

knowledge here is still scarce with regard to otters, especially in fish pond landscapes. Landscapes 

dominated by fish ponds are strongholds for otters in Europe but are also hot spots for conflicts 

between fish farmers and otters. 

On that account, the goal of this dissertation was to estimate population sizes for a population of high 

conservation interest, to examine whether and how non-invasive genetic capture-mark-recapture 

(CMR) using otter faeces can be successfully applied, and to gain knowledge about population 

dynamics and behaviour on this threatened species in a fish pond system. The present study was 

conducted in the Upper Lusatian heath and pond landscape in Eastern Saxony, Germany. This region 

is characterised by about 5000 ha pond that are used for fish farming. Here, otters never got extinct 

and occur in relatively high densities. In a study area including 64 ponds (505 ha), overall 2132 

samples were collected over a period of six sampling years (2006–2008; 2010–2012), each consisting 

of five consecutive sampling days. Samples were extracted and amplified at seven microsatellite loci 

and two sex markers to generate multilocus genotypes for individual identification. 

Using these samples, I first optimised the sampling, preservation, extraction, and amplification of otter 

faecal DNA that is known for low success rates and high genotyping error rates. These methodological 

optimisations are not only useful for otters but can generally be applied to studies employing non-

invasive genetic sampling and can help deriving more reliable microsatellite genotypes.  

There are recent studies arguing that impacts of genotyping errors on population demographic 

analyses can be reduced to an acceptable level through accurate laboratory procedure and data quality 

controls or that genotyping errors can even be neglected. In contrast, I demonstrated that even a 

rigorous lab procedure with more PCR repetitions than usual and subsequent error checks may not 

completely eliminate errors with certainty. Remaining errors will lead to severe biases in subsequent 

analyses, especially in population size estimations. Here, I illustrated that it is advisable to use error-

incorporating estimation models. Employing the misidentification model implemented in Programme 

MARK, I estimated the population size for the first sampling year and compared the estimator with 

other conventional and error-incorporating methods. In doing so, I could provide a step-by-step 

protocol for non-invasive genetic CMR studies to achieve reliable estimates of population sizes in the 

presence of high genotyping error rates.  

By using this step-by-step protocol for the remaining five sampling years, I demonstrated that non-

invasive genetic CMR can successfully be applied on otters when their marking behaviour is taken 

into account, namely the male bias in defecating high DNA-quality jelly samples, preferentially on 
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prominent marking sites, and a potentially increased marking intensity of already collected 

individuals. I illustrated that contrary to the non-invasive genetic CMR approach, faecal densities 

cannot be used as an index of otter abundances, as suggested in the literature. This is mainly due to 

seasonal and individual differences in marking behaviour, but also due to invasive American minks 

(Neovison vison), whose faeces can be easily confused with otter spraints. 

The abovementioned misidentification model was also used to determine apparent survival and 

temporary migration rates in a robust design approach. Apparent survival was 11% higher for females 

than for males. One reason might be the detected higher male mobility with 5% higher temporary 

emigration/re-immigration, higher dispersal rate, and larger activity range indices compared to 

females. I found a high proportion of activity range overlaps that were negatively correlated with 

relatedness for female-male dyads, which reduces inbreeding risk, and positively correlated for same-

sex dyads, with a higher correlation among females. Such high proportions of overlap in activity 

ranges were not reported from other habitats and could hint to a different spatial use of otters in fish 

pond systems or to density-dependent changes of activity ranges and overlaps, since I found 

comparably high otter densities. Constantly high densities from 2006 till 2012 and moderately high 

apparent survival rates indicate a thriving population in Upper Lusatia that probably benefited from 

the damage compensation schemes of the Federal State of Saxony. These compensation schemes 

reimburse fish farmers for otter damages. 

In summary, this research provided a step-by-step protocol for non-invasive genetic CMR studies with 

high genotyping error rates, guidelines of how to successfully apply this protocol on otters, and 

contributed to an improved understanding and increased knowledge of movement patterns, spatial use, 

marking behaviour, and demographic parameters for use in otter conservation practice. 
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Zusammenfassung 
 
Nachdem die Bestände des Eurasischen Fischotters (Lutra lutra) in Europa über Jahrzehnte zurück-

gegangen sind und sich seine Verbreitungsareale stark verkleinert haben, erholen sich die Bestände in 

jüngster Zeit und breiten sich in Deutschland und anderen europäischen Ländern wieder aus. Für ein 

nachhaltiges Management und den Schutz der semi-aquatisch lebenden Art werden vertrauenswürdige 

Schätzungen populationsdynamischer Parameter wie z.B. Populationsgröße, Geschlechterverhältnisse, 

Überlebens- oder Migrationsraten benötigt. Eine verlässliche Schätzung dieser Parameter ist jedoch 

schwierig, vor allem für schwer erfassbare Arten wie den Fischotter. Deshalb ist unser Wissen über 

den Otter dahingehend sehr limitiert, besonders in Gebieten mit vielen Fischteichen. Landschaften, die 

von Fischteichen geprägt sind, stellen besonders wichtige Refugien für den Otter dar, häufig 

verbunden mit hohen Populationsdichten. Zeitgleich ist das Konfliktpotential zwischen Mensch und 

Fischotter in solchen Gebieten besonders hoch. 

Aufgrund dessen war es das Ziel dieser Dissertation, die sogenannte nicht-invasive genetische Fang-

Wiederfang-Methode erfolgreich auf den Otter anzuwenden und für diesen zu optimieren, um damit 

die Populationsgröße und andere Parameter, sowie das Markierungsverhalten einer, an Fischteichen 

lebenden, Otterpopulation zu bestimmen. Die Untersuchungen wurden in der Oberlausitzer Heide- und 

Teichlandschaft im Osten von Sachsen (Deutschland) durchgeführt. Diese Region ist geprägt von ins-

gesamt ca. 5000 ha Fischteichen, wurde fortwährend von Ottern besiedelt und ist bekannt für seine 

hohen Fischotterdichten. Innerhalb von sechs Untersuchungsjahren (2006–2008; 2010–2012), die 

jeweils aus fünf aufeinanderfolgenden Sammeltagen bestanden, wurden 2132 Kotproben in einem 

Gebiet mit 64 Teichen (505 ha) gesammelt. Die DNA der Kotproben wurde isoliert und mit sieben 

Mikrosatellitenmarkern und zwei Geschlechtsmarkern amplifiziert, um für jede Probe einen indivi-

duellen Genotyp zu erhalten. 

Mit Hilfe dieser Proben wurden zuerst die methodischen Schritte, d.h. Probennahme und -konser-

vierung, sowie Extraktion und Amplifizierung der DNA für Otterkotproben optimiert. Otterkotproben 

sind bekannt für geringe Erfolgsraten und hohe Genotypisierungsfehlerraten. Die Optimierrungen 

können jedoch nicht nur auf den Otter angewandt werden, sondern helfen auch bei anderen Arten 

höhere Erfolgsraten und verlässlichere Genotypen zu erhalten. 

In einigen Studien wird behauptet, dass die negativen Auswirkungen von Genotypisierungsfehlern 

durch ein akkurates Arbeiten im Labor zu einem akzeptablen Maß reduziert werden könnten oder man 

die Fehler sogar ganz ignorieren könnte. In meiner Arbeit konnte ich allerdings aufzeigen, dass auch 

ein rigoroses Laborprotokoll mit einer hohen Anzahl von PCR-Wiederholungen und anschließenden 

Fehlerkontrollen nicht alle Genotypisierungsfehler beseitigen kann und selbst diese wenigen Fehler zu 

schwerwiegenden Verzerrungen der Ergebnisse führen, besonders bei Populationsgrößenschätzungen. 

Deshalb ist es ratsam Methoden zu verwenden, die Genotypisierungsfehler in die Schätzungen mit ein-

beziehen. Eine dieser Methoden ist das Fehlbestimmungs-Modell im Computerprogramm MARK, mit 
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dem ich die Populationsgröße des ersten Sammeljahres bestimmt habe und mit Ergebnissen anderer 

konventioneller und fehlereinbeziehender Schätzer verglichen habe. Dadurch war es möglich eine 

Schritt-für-Schritt-Anleitung für die nicht-invasive genetische Fang-Wiederfang-Methode zu erstellen, 

die bei hohen Genotypisierungsfehlerraten eine zuverlässige Populationsgrößenschätzung ermöglicht. 

Diese Anleitung wurde im Anschluss für die verbleibenden fünf Sammeljahre verwandt, wodurch 

gezeigt werden konnte, dass sie erfolgreich auf den Otter angewendet werden kann, sofern man sein 

Markierungsverhalten berücksichtigt – nämlich, dass qualitativ höherwertige Jelly-Proben mehr von 

Männchen und in hochfrequentierten Markierungsstellen abgelegt werden und, dass möglicherweise 

bereits beprobte Tiere mit einer höheren Markierungsintensität auf das Sammeln ihres Kots antworten. 

Im Gegensatz zur non-invasiven genetischen Fang-Wiederfang-Methode kann die Dichte der 

Kotproben in einem bestimmten Gebiet nicht dazu verwendet werden, um Aussagen über die 

Populationsgröße zu treffen. Dies steht im Gegensatz zu einigen Studien, die diese Methode für 

Abundanzschätzungen nutzten. Saisonale und individuelle Markierungsunterschiede, aber auch die 

Anwesenheit des invasiven Amerikanischen Minks (Neovison vison), dessen Kot leicht mit Otterkot 

zu verwechseln ist, machen diese Methode für Abundanzschätzungen unbrauchbar. 

Das oben genannte Fehlbestimmungs-Modell wurde auch verwendet, um Überlebensraten und 

temporäre Migrationsraten mit Hilfe des robust design zu bestimmen. Die Überlebensrate der 

Weibchen war 11% höher als die der Männchen. Ein Grund dafür könnte die höhere männliche 

Mobilität sein, die sich durch eine um 5% größere temporäre Migrationsrate, erhöhte Dispersionsraten 

und größere Aktivitätsräume der Männchen äußerte. Überlappungen zwischen den Aktivitätsräumen 

waren häufig und prozentual großflächig. Dabei zeigte sich eine negative Korrelation zwischen der 

Überlappungsgröße (prozentual zur Gesamtgröße) und dem Verwandtschaftsgrad bei gegen-

geschlechtlichen Paaren, was wahrscheinlich der Reduzierung des Inzuchtrisikos dient, während bei 

gleichgeschlechtlichen Paaren eine positive Korrelation gefunden wurde. Diese war für Weibchen 

wesentlich höher als für Männchen. Solch häufige Überlappungen der Aktivitätsbereiche wurden von 

keinem anderen Habitat berichtet und könnten auf eine andersartige räumliche Nutzung der Fisch-

teiche hinweisen oder aber auf eine dichteabhängige Raumnutzung, was bei den geschätzten hohen 

Dichten durchaus plausibel wäre. Die von 2006 bis 2012 relativ gleichbleibend hohen Otterdichten 

und die mittelhohe Überlebensrate deuten auf eine vitale Population in der Oberlausitz hin, die 

wahrscheinlich von den Schadensersatzregelungen des Freistaates Sachsen profitiert. Dieses Kompen-

sationsprogramm erstattet den Fischzüchtern durch den Otter entstandene ökonomische Schäden. 

Zusammengefasst wurde im Rahmen dieser Dissertation eine schrittweise Anleitung für nicht-invasive 

genetische Fang-Wiederfang-Studien mit hohen Fehlerraten erstellt und Empfehlungen gegeben, wie 

diese Anleitung erfolgreich auf den Otter angewendet werden kann. Zudem wurde ein Beitrag zum 

besseren Verständnis des Markierungsverhaltens, der Bewegungsmuster und Raumnutzung des Fisch-

otters geleistet und wichtige demografische Parameter bestimmt, die für den Schutz des Fischotters 

unerlässlich sind. 
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Table  S1.  Simple  step‐by‐step  guide  for  non‐invasive  genetic  capture‐mark‐recapture  (CMR)  studies, 
particularly  for  samples  with  high  genotyping  error  rate  and  low  amplification  success  rate.  Here,  we 
summarize  the  recommendations  found  in  the  literature or derived  from our own  results and we  contrast 
commonly used or available methods addressing the problem or task by offering their pros () and cons ().  

  Task & Requirements  Methods Addressing the Task & Requirementa 
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Closed population  
(Alternative: open population models) 

Choose a short sampling period relative to the biology (e.g., turnover rate) 
of target species 

Perform  a  simulation  (e.g.,  in  MARK  (White  and  Burnham  1999))  to 
estimate the number of required sampling occasions 

Choose a large study area relative to the species territory size 

Avoid periods with high migration, mortality, or birth 

If possible, take only fresh samples 

Equal capture probability 
(is difficult to meet, but should be maximized) 

Choose  non‐invasive material  (e.g.,  hairs,  feces,  urine,  saliva,  feathers) 
that is deposited by all members of the population or collect several kinds 
of samples 

Choose  a  sampling  regime within  the  study  area  (e.g.,  transects,  follow 
trails, sampling points) where chances are highest to collect all members 
of the population 

Choose  a  time  period  where  all  individuals  have  a  chance  of  being 
sampled regarding their sex, age, reproductive status 

Get high re/capture rate by collecting as many samples as possible 

Sampling technique 
(must  fit  to  preservation  &  extraction; 
perform a pilot study if possible; strictly avoid 
cross‐contamination) 

Dry  samples  (e.g.,  hairs,  feathers)  should  be  taken  entirely  with  new 
gloves for each sample or disposable collection tools 

Moist  samples  (e.g.,  feces,  urine,  saliva)  can  be  taken  entirely  (caution: 
may alter species behavior) or parts of it (e.g., surface scrap) with a swap 
or other disposable collection tools 
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Preservation 
(must fit to extraction; perform a pilot study if 
possible) 

Freezing (i.e., –20°C; –80°C) 
 Quick; works well for dry samples 
  Risk  of  decreasing  amplification  success  rate,  especially  for  moist 
samples; equipment needed; only shortly shippable 

Drying (e.g., oven, silica gel) 
 Cheap; can be done almost everywhere in the field; shippable 
  Risk  of  decreasing  amplification  success  rate,  especially  for  moist 
samples, but works for some feces (e.g., Piggott and Tayler 2003) 

Buffers  (e.g.,  ethanol,  DET  buffer,  RNAlater  solution  at  room  temp.  or 
–80°C) 
 Seems to work well for many moist samples 
  Extra  chemicals  needed;  extra  handling  before  extraction  required; 
often not shippable 

Lyse buffer of extraction (room temp. or –80°C) 
 No  extra  costs;  first  extraction  step  is done; possible  for  all  kinds of 
samples 
  Often  not  shippable;  has  not  been  tested  yet  on  various  kinds  of 
samples 

Extraction 
(perform  a  pilot  study  if  possible;  prevent 
cross‐contamination rigorously) 

Phenol/chloroform extraction 
 Effective on a wide range of samples and for very long DNA fragments 
(i.e., Kbps) 
 Hazardous chemicals; time‐consuming; old‐fashioned 



Appendix to Chapter Three 

113 

Resin‐based extraction (e.g., Chelex®) 
 Cheap and quick 
  Low  DNA  purity;  can  inhibit  PCR;  DNA  degradation  with  increasing 
storage time 

Silica‐based extraction (e.g., commercial kits) 
  High  DNA  quality;  effective  on  a  wide  range  of  samples;  less  PCR 
inhibitors 
 Expensive; time‐consuming 

  Minimizing genotyping errors  
(amplification pilot  study must be performed 
to  get  best  PCR  conditions;  prevent  cross‐
contamination rigorously) 

Use engineered polymerase enzymes 
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Choose  only  few  (<  10),  but  highly  variable  and  short  (<  200–300  bp) 
markers 

Use low retention plastic tubes (in all lab steps) 

Multiple‐tubes approach (Taberlet et al. 1996) 
 Reliable consensus genotype following a worst‐case approach 
 Time‐consuming; cost‐intensive; DNA extract‐consuming 

Comparative multiple‐tubes approach (Frantz et al. 2003) 
 Reliable consensus genotype with less repetitions; less time‐, cost‐, and 
extract‐consuming than multiple‐tubes approach 
 Still relatively time‐consuming, cost‐intensive and extract‐consuming 

Multiplex  pre‐amplification  (Bellemain  and  Taberlet  2004;  Piggott  et  al. 
2004) 
 Increased amplification success; decreased genotyping error rate 
 Relatively time‐consuming and cost‐intensive 

Discard low‐quality samples using quantitative PCR (Morin et al. 2001) 
 Minimizes time and costs required for genotyping; consensus genotype 
achievable with fewer repetitions 
  Method  itself  is  expensive  and  requires  additional  effort  to  the 
genotyping  analysis;  removing  low‐quality  samples  might  induce 
individual capture heterogeneity 

Discard low‐quality samples using mtDNA analysis (Kohn et al. 1999) 
 Minimizes time and costs required for genotyping; consensus genotype 
achievable with fewer repetitions; recognition of non‐target species  
 Additional effort and costs  to  the genotyping analysis;  removing  low‐
quality samples might induce individual capture heterogeneity 

Quality control approach (Paetkau 2003) 
  Minimizes  time  and  costs  required  for  genotyping;  no  consensus 
genotype required 
 Not  rigorous  enough  for  high  genotyping  error  rates;  removing  low‐
quality samples might induce individual capture heterogeneity 

Screening approach (Lampa et al. 2013) 
 Minimizes  time and costs  required  for genotyping;  reliable consensus 
genotypes 
  Still  relatively  time‐consuming,  cost‐intensive  and  extract‐consuming; 
removing  low‐quality  samples  might  induce  individual  capture 
heterogeneity 

Detection and quantification of 
genotyping errors 

Calculation of AD & FA following Broquet and Petit (2004) 
 Actual values of AD & FA for the dataset; standardized calculation 
 Requires consensus genotype, hence multiple repetitions 

Automated calculation of AD & FA using program GIMLET (Valière 2002) 
 Fast calculation of the actual AD & FA values for the dataset 
  Requires  consensus  genotype;  cannot  handle  varying  numbers  of 
repetitions per loci within a sample 

Calculation of the quality index (Miquel et al. 2006) 
 Standardized calculation; easy and quick 
 No  information about  type and number of errors within a  sample or 
locus; not commonly used 

MLE of AD and FA using program PEDANT (Johnson and Haydon 2007) 
 No consensus genotype required 
 AD & FA rate only for loci not for samples 

  MLE of  required PCR  repetitions using program RELIOTYPE  (Miller et al. 
2002) 
 Received number of  repetitions are given  for each sample; minimizes 
time and costs required for genotyping 
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  Accounts  only  for  AD;  AD must  be  evenly  distributed;  requires  two 
positive PCRs per locus 
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Simulation of required PCR repetitions using program GEMINI (Valière et 
al. 2002) 
  Can  be  done  in  advance;  minimizes  time  and  costs  required  for 
genotyping 
  Requires  known  error  rates  and  heterozygosity;  received  number  of 
repetitions are not specified for loci or samples  

Testing  for  errors  in  the  dataset  using  program MICRO‐CHECKER  (Van 
Oosterhout et al. 2004) 
 Can be used after the first positive PCR; recognizes error‐prone loci 
 Cumbersome  for many  loci or  large populations; no  indication which 
samples harbor errors; detects only systematic errors, no random one 

Testing for errors  in the dataset using program DROPOUT (McKelvey and 
Schwartz 2004, 2005) 
 Recognizes error‐prone  loci and samples; can be used at each state of 
the analysis; minimizes time and costs required for genotyping 
  Assumes  equal  capture  probability  among  individuals;  requires 
sufficiently  large  tag  size  (preferably  >  8);  if  used  without  forming 
consensus genotypes the per‐locus error rate should not exceed 0.25 

Matching  approach  (Creel  et  al.  2003)  or  other  correction  methods 
(Bellemain et al. 2005) 
 Does not  require  a  complete  elimination of  all  errors; biological  and 
spatial information can be used 
 Calibration of the threshold for the matching approach  is difficult; can 
lead to underestimated population sizes 
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Test of closure  Use  of  tests  such  as  CLOSETEST  (Stanley  and  Richard  2005)  or  Pradel’s 
(1996) recruitment model following Boulanger et al. (2002) 
  Test  statistics  or  key  figures  can  be  used  to  accept  or  reject  the 
assumption 
  Individual  capture  heterogeneity  and  genotyping  errors  leading  to 
ghost individuals can cause incorrect rejection of closure 

Assess closure on the basis of biological information 
 Cannot be confounded with individual heterogeneity or the presence of 
ghost individuals  
  Arguments  are  always  contradictable  as  decision  is  only  based  on 
logical reasoning 

Test for equal capture probability  The model selected should account  for the biology of the target species, 
the employed sampling design, and which management decisions will be 
based on the model 

Simulation test (Puechmaille and Petit 2007) 
 Data‐specific simulation  
 Additional effort required; requires an estimate of population size 

Model selection algorithm in program CAPTURE (White et al. 1982) 
 No additional effort  to population  size estimation;  selection between 
models  accounting  for  several  kinds  of  varying  capture  probability  (M0, 
Mh, Mb, Mt, Mtb, Mth, Mbh) 
  Low  power;  not  appropriate  for  small  populations,  for  low  capture 
probability, or data with genotyping errors; model selection choose most 
frequently M0 for error‐free data and Mh for data having errors 

LRT in program CAPWIRE (Miller et al. 2005) 
 No additional effort to population size estimation 
 Misses some types of individual capture heterogeneity; decision is only 
made between M0 and Mh 

AIC‐based model selection in program MARK (White and Burnham 1999) 
 No additional effort  to population  size estimation;  selection between 
models  accounting  for  several  kinds  of  varying  capture  probability  (M0, 
Mh, Mb, Mt, Mtb, Mth, Mbh) and several model systems 
 Can fail if assessed models suffer structural deficits 

Conventional estimation models 
(there  are many more models  available,  but 
so far not widely used in non‐invasive genetic 
CMR studies) 

Program CAPWIRE (Miller et al. 2005) 
  Incorporates  multiple  captures  of  an  individual  within  a  sampling 
occasion; appropriate for small populations; model selection tool available 
  Severe  overestimation  if  genotyping  errors  are  still  present;  only M0 
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and Mh available 
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Program CAPTURE (White et al. 1982) 
 Offers several models accounting for varying capture probability; model 
selection tool available 
 Severe overestimation if genotyping errors are still present 

Program MARK (White and Burnham 1999) 
 Offers several model systems, each with models accounting for varying 
capture probability; model selection tool available 
 Severe overestimation if genotyping errors are still present 

Models accounting for genotyping 
errors 

Corrected Lincoln‐Peterson estimator (Stevick et al. 2001) 
  Specially  developed  for  individual  identification  using  poor  quality 
photographs; useful for data with two sampling sessions 
  Assumes  equal  capture  probability;  with  individual  capture 
heterogeneity  estimator underestimates population  sizes;  accounts only 
for  two  sampling  sessions;  requires  known  false  negative  rate;  no 
software available implementing the method 

GUAVA approach (Knapp et al. 2009) 
  Accounts  for  the  shadow  effect;  useful  for  data with  two  sampling 
sessions; software available 
  Assumes  equal  capture  probability;  with  individual  capture 
heterogeneity  estimators underestimate population  sizes;  accounts only 
for two sampling sessions; requires genotyping error rate, allele frequency 
and  HWE;  should  not  be  used  if  target  population  was  never  studied 
before; extant error rate in the data should not markedly exceed 6% 

Mis‐indentification  models  in  MARK  (Lukacs  and  Burnham  2005)   
termed L&B estimator 
 Works well  if misidentification  is  ≤ 5%; offers probability of a correct 
classification;  offers  several  models  accounting  for  varying  capture 
probability;  model  selection  tool  available;  software  implementing  the 
method available 
  Still  extant  error  rate  should  not  exceed  5%;  biased  for  low  capture 
probabilities; not correctly accounting for misidentification process; some 
assumptions may not always be true: a) errors are not repeated, b) errors 
cannot  lead  to  an  existing  genotype,  c)  finite mixture  of  true  and  false 
genotypes  with  same  initial  detection  probabilities,  d)  probability  of 
correctly identifying an individual on first capture equals the proportion of 
true  genotypes;  requires  a  certain  amount  of  data  to  separate 
misidentification from heterogeneity 

Mt‐based approaches of Yoshizaki et al. (2011) 
  Works  well  if  misidentification  is  between  0–10%;  mimics  a  more 
realistic  misidentification  process;  multiple  captures  of  individuals  per 
sampling occasion are possible 
 No other variance in catchability than time is considered; biased for low 
capture probabilities  if misidentification  is  close  to 1;  requires  the  same 
assumptions  like  the L&B estimator; has not yet been applied by others 
and performance still needs to be evaluated using field data; no software 
or script available implementing the method 

Bayesian method of Link et al. (2010) 
  Works  well  if  no  errors  are  present;  mimics  a  more  realistic 
misidentification process; does not require assumptions c) and d) of L&B 
estimator;  multiple  captures  of  individuals  per  sampling  occasion  are 
possible; allows to include additional knowledge using informative priors 
  No  other  variance  in  catchability  than  time  is  considered;  requires 
assumption a) and b) like the L&B estimator; extensions of the model are 
needed;  requires  more  computing  time;  requires  knowledge  on  the 
statistic process; has not yet been applied by others or compared to other 
methods  (except  with  Yoshizaki  et  al.  (2011));  no  software  or  script 
available implementing the method 

Bayesian method of Wright et al. (2009,2012)  termed Wright‐model 
 Works well  if  no  errors  are  present;  accounts  for  time  variance  and 
individual heterogeneity; does not  require assumptions a) and b) of L&B 
estimator;  multiple  captures  of  individuals  per  sampling  occasion  are 
possible; allows to include additional  
knowledge using informative priors; R‐Script available upon request 
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 Does not  account  for behavioral  response;  requires more  computing 
time;  requires  knowledge  on  the  statistic  process;  has  not  yet  been 
applied by others or compared to other methods 

a PCR = polymerase chain reaction, AD = allelic dropout, FA = false allele, HWE = Hardy‐Weinberg equilibrium 
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